[数据集][目标检测]基于yolov5增强数据集算法mosaic来扩充自己的数据集自动生成增强图片和对应标注无需重新标注

【算法介绍】

YOLOv5最引人注目的增强技术之一是马赛克增强,它将四张不同的图像拼接成一张图像。

思路:首先,从数据集中随机选择四张图像,然后将它们缩放、随机裁剪,并按马赛克模式拼接在一起。这种方式允许模型看到多尺度的目标,并且增强了目标的背景多样性。

步骤:

  • 初始化整个背景图, 大小为(2 × image_size, 2 × image_size, 3)
  • 随机取一个中心点
  • 基于中心点分别将4个图放到左上,右上,左下,右下,,此部分可能会由于中心点小于4张图片的宽高
  • 所以拼接的时候可能会进行裁剪重新将打标边框的偏移量计算上

mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。

【效果展示】

标注情况:

【使用方法】

安装好opencv-python和pillow模块后,执行python main.py即可,main.py里面路径需要提前修改为自己对应路径

复制代码
from voc_mosaic_firc import *

if __name__ == '__main__':
    image_dir = r'E:\VOC2012\JPEGImages'  # 图片目录必须是.jpg格式
    xml_dir = r'E:\VOC2012\Annotations'  # 标注目录,里面有对应xml文件,voc格式
    save_dir = r'C:\Users\Administrator\Desktop\dataset'  # 保存目录
    generate_count = 5  # 生成数
    mm = MosaicManager()  # 构建对象
    mm.start(image_dir, xml_dir, save_dir, generate_count)  # 开始生成

【完整实现源码下载】

https://download.csdn.net/download/FL1623863129/89789898

相关推荐
wyw00004 小时前
目标检测之YOLO
人工智能·yolo·目标检测
AI即插即用5 小时前
即插即用系列(代码实践)专栏介绍
开发语言·人工智能·深度学习·计算机视觉
2501_941322036 小时前
计算机视觉实现火灾与烟雾实时监测系统
人工智能·计算机视觉
wen__xvn6 小时前
目标检测的局限
人工智能·目标检测·计算机视觉
Ryan老房7 小时前
自动驾驶数据标注-L4-L5级别的数据挑战
人工智能·目标检测·目标跟踪·自动驾驶
weixin_398187757 小时前
YOLOv8结合SCI低光照图像增强算法实现夜晚目标检测
人工智能·yolo
duyinbi75178 小时前
YOLOv8-SEG齿轮缺陷检测与分类系统实现_LAWDS
yolo·分类·数据挖掘
啊阿狸不会拉杆8 小时前
第 3 章 灰度变换与空间域滤波
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·数字图像处理
羽小暮10 小时前
Yolo11环境配置win+Python+Anaconda--小白目标检测学习专用(超详细)
人工智能·yolo·目标检测
雪寻梅*10 小时前
(深度学习)python+yolov11训练自己的数据集
人工智能·python·深度学习·yolo