[数据集][目标检测]基于yolov5增强数据集算法mosaic来扩充自己的数据集自动生成增强图片和对应标注无需重新标注

【算法介绍】

YOLOv5最引人注目的增强技术之一是马赛克增强,它将四张不同的图像拼接成一张图像。

思路:首先,从数据集中随机选择四张图像,然后将它们缩放、随机裁剪,并按马赛克模式拼接在一起。这种方式允许模型看到多尺度的目标,并且增强了目标的背景多样性。

步骤:

  • 初始化整个背景图, 大小为(2 × image_size, 2 × image_size, 3)
  • 随机取一个中心点
  • 基于中心点分别将4个图放到左上,右上,左下,右下,,此部分可能会由于中心点小于4张图片的宽高
  • 所以拼接的时候可能会进行裁剪重新将打标边框的偏移量计算上

mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。

【效果展示】

标注情况:

【使用方法】

安装好opencv-python和pillow模块后,执行python main.py即可,main.py里面路径需要提前修改为自己对应路径

复制代码
from voc_mosaic_firc import *

if __name__ == '__main__':
    image_dir = r'E:\VOC2012\JPEGImages'  # 图片目录必须是.jpg格式
    xml_dir = r'E:\VOC2012\Annotations'  # 标注目录,里面有对应xml文件,voc格式
    save_dir = r'C:\Users\Administrator\Desktop\dataset'  # 保存目录
    generate_count = 5  # 生成数
    mm = MosaicManager()  # 构建对象
    mm.start(image_dir, xml_dir, save_dir, generate_count)  # 开始生成

【完整实现源码下载】

https://download.csdn.net/download/FL1623863129/89789898

相关推荐
一花·一叶5 小时前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币5 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580086 小时前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
LabVIEW开发9 天前
LabVIEW液位上升图像识别 附件有源码
计算机视觉·labview知识
Echo``9 天前
12.OpenCV—基础入门
开发语言·c++·人工智能·qt·opencv·计算机视觉
jndingxin9 天前
OpenCV CUDA模块设备层-----线程块内初始化连续内存区域 的设备端工具函数blockYota()
人工智能·opencv·计算机视觉
king of code porter10 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
AI technophile10 天前
OpenCV计算机视觉实战(12)——图像金字塔与特征缩放
人工智能·opencv·计算机视觉
justtoomuchforyou10 天前
PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
人工智能·目标检测·计算机视觉·智驾