[数据集][目标检测]基于yolov5增强数据集算法mosaic来扩充自己的数据集自动生成增强图片和对应标注无需重新标注

【算法介绍】

YOLOv5最引人注目的增强技术之一是马赛克增强,它将四张不同的图像拼接成一张图像。

思路:首先,从数据集中随机选择四张图像,然后将它们缩放、随机裁剪,并按马赛克模式拼接在一起。这种方式允许模型看到多尺度的目标,并且增强了目标的背景多样性。

步骤:

  • 初始化整个背景图, 大小为(2 × image_size, 2 × image_size, 3)
  • 随机取一个中心点
  • 基于中心点分别将4个图放到左上,右上,左下,右下,,此部分可能会由于中心点小于4张图片的宽高
  • 所以拼接的时候可能会进行裁剪重新将打标边框的偏移量计算上

mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。

【效果展示】

标注情况:

【使用方法】

安装好opencv-python和pillow模块后,执行python main.py即可,main.py里面路径需要提前修改为自己对应路径

复制代码
from voc_mosaic_firc import *

if __name__ == '__main__':
    image_dir = r'E:\VOC2012\JPEGImages'  # 图片目录必须是.jpg格式
    xml_dir = r'E:\VOC2012\Annotations'  # 标注目录,里面有对应xml文件,voc格式
    save_dir = r'C:\Users\Administrator\Desktop\dataset'  # 保存目录
    generate_count = 5  # 生成数
    mm = MosaicManager()  # 构建对象
    mm.start(image_dir, xml_dir, save_dir, generate_count)  # 开始生成

【完整实现源码下载】

https://download.csdn.net/download/FL1623863129/89789898

相关推荐
格林威1 小时前
AOI在化学药剂检测领域中的应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造·机器视觉
Theodore_10221 小时前
深度学习(10)模型评估、训练与选择
人工智能·深度学习·算法·机器学习·计算机视觉
CV炼丹术1 小时前
NeurIPS 2025 | 港中文提出COS3D:多模态融合语言与分割,创造开放词汇3D分割新范式!
人工智能·计算机视觉·neurips 2025
AI technophile2 小时前
OpenCV计算机视觉实战(28)——深度学习初体验
深度学习·opencv·计算机视觉
hixiong1232 小时前
C# OpencvSharp使用lpd_yunet进行车牌检测
开发语言·opencv·计算机视觉·c#
Coovally AI模型快速验证2 小时前
超越传统3D生成:OccScene实现感知与生成的跨任务共赢
人工智能·深度学习·机器学习·计算机视觉·3d·目标跟踪
CV实验室4 小时前
CV论文速递: 覆盖医学影像分析、视频理解与生成、3D场景理解与定位等方向! (10.27-10.31)
人工智能·计算机视觉·3d·音视频
LabVIEW开发4 小时前
LabVIEW用直线边缘检测实现液位测量
数码相机·计算机视觉·labview·labview知识·labview功能·labview程序
唯道行5 小时前
计算机图形学·6 OpenGL编程3 谢尔宾斯基垫与三维编程
人工智能·算法·计算机视觉·计算机图形学·三维·谢尔宾斯基垫
CoovallyAIHub5 小时前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
深度学习·算法·计算机视觉