[数据集][目标检测]基于yolov5增强数据集算法mosaic来扩充自己的数据集自动生成增强图片和对应标注无需重新标注

【算法介绍】

YOLOv5最引人注目的增强技术之一是马赛克增强,它将四张不同的图像拼接成一张图像。

思路:首先,从数据集中随机选择四张图像,然后将它们缩放、随机裁剪,并按马赛克模式拼接在一起。这种方式允许模型看到多尺度的目标,并且增强了目标的背景多样性。

步骤:

  • 初始化整个背景图, 大小为(2 × image_size, 2 × image_size, 3)
  • 随机取一个中心点
  • 基于中心点分别将4个图放到左上,右上,左下,右下,,此部分可能会由于中心点小于4张图片的宽高
  • 所以拼接的时候可能会进行裁剪重新将打标边框的偏移量计算上

mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。

【效果展示】

标注情况:

【使用方法】

安装好opencv-python和pillow模块后,执行python main.py即可,main.py里面路径需要提前修改为自己对应路径

复制代码
from voc_mosaic_firc import *

if __name__ == '__main__':
    image_dir = r'E:\VOC2012\JPEGImages'  # 图片目录必须是.jpg格式
    xml_dir = r'E:\VOC2012\Annotations'  # 标注目录,里面有对应xml文件,voc格式
    save_dir = r'C:\Users\Administrator\Desktop\dataset'  # 保存目录
    generate_count = 5  # 生成数
    mm = MosaicManager()  # 构建对象
    mm.start(image_dir, xml_dir, save_dir, generate_count)  # 开始生成

【完整实现源码下载】

https://download.csdn.net/download/FL1623863129/89789898

相关推荐
陈嘿萌21 小时前
图像融合任务在目标检测中的性能评估与深度思考
目标检测·yolov8·图像融合·深度思考·代码实现
Coding茶水间1 天前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
JicasdC123asd1 天前
基于YOLOv5-CARAFE的混凝土裂缝裂纹检测系统从原理到实现详细解析
yolo
Salt_07281 天前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
jackylzh1 天前
配置pytorch环境,并调试YOLO
人工智能·pytorch·yolo
m0_692457101 天前
图像的几何变换
人工智能·计算机视觉
q_30238195561 天前
YOLOv8屏幕划痕检测与香橙派边缘推理全流程实践
yolo
自己的九又四分之三站台1 天前
OpenCV介绍
人工智能·opencv·计算机视觉
Coovally AI模型快速验证1 天前
YOLO11算法深度解析:四大工业场景实战,开源数据集助力AI质检落地
人工智能·神经网络·算法·计算机视觉·无人机