[数据集][目标检测]基于yolov5增强数据集算法mosaic来扩充自己的数据集自动生成增强图片和对应标注无需重新标注

【算法介绍】

YOLOv5最引人注目的增强技术之一是马赛克增强,它将四张不同的图像拼接成一张图像。

思路:首先,从数据集中随机选择四张图像,然后将它们缩放、随机裁剪,并按马赛克模式拼接在一起。这种方式允许模型看到多尺度的目标,并且增强了目标的背景多样性。

步骤:

  • 初始化整个背景图, 大小为(2 × image_size, 2 × image_size, 3)
  • 随机取一个中心点
  • 基于中心点分别将4个图放到左上,右上,左下,右下,,此部分可能会由于中心点小于4张图片的宽高
  • 所以拼接的时候可能会进行裁剪重新将打标边框的偏移量计算上

mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。

【效果展示】

标注情况:

【使用方法】

安装好opencv-python和pillow模块后,执行python main.py即可,main.py里面路径需要提前修改为自己对应路径

复制代码
from voc_mosaic_firc import *

if __name__ == '__main__':
    image_dir = r'E:\VOC2012\JPEGImages'  # 图片目录必须是.jpg格式
    xml_dir = r'E:\VOC2012\Annotations'  # 标注目录,里面有对应xml文件,voc格式
    save_dir = r'C:\Users\Administrator\Desktop\dataset'  # 保存目录
    generate_count = 5  # 生成数
    mm = MosaicManager()  # 构建对象
    mm.start(image_dir, xml_dir, save_dir, generate_count)  # 开始生成

【完整实现源码下载】

https://download.csdn.net/download/FL1623863129/89789898

相关推荐
CoovallyAIHub3 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·计算机视觉
lxmyzzs6 小时前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
智算菩萨7 小时前
【计算机视觉与深度学习实战】05计算机视觉与深度学习在蚊子检测中的应用综述与假设
人工智能·深度学习·计算机视觉
hllqkbb7 小时前
人体姿态估计-动手学计算机视觉14
人工智能·opencv·计算机视觉·分类
CoovallyAIHub9 小时前
为什么85%的企业AI项目都失败了?
深度学习·算法·计算机视觉
爆改模型11 小时前
【Trans2025】计算机视觉|UMFormer:即插即用!让遥感图像分割更精准!
人工智能·计算机视觉
双翌视觉20 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
Coovally AI模型快速验证1 天前
SOD-YOLO:基于YOLO的无人机图像小目标检测增强方法
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
却道天凉_好个秋1 天前
计算机视觉(一):nvidia与cuda介绍
人工智能·计算机视觉
fengfuyao9851 天前
基于MATLAB的GUI实现人脸检测、眼睛检测以及LBP直方图显示
开发语言·计算机视觉·matlab