TensorRT | 在多个GPU中指定推理设备

说实话,之前我在笔记本上都一直都是只有一块N卡,所以没有过多关注过这个问题。然而昨天有个人问我,TensorRT怎么在多个GPU中指定模型推理GPU设备?我查了一下,发现官方有几个不同的解决方案,个人总结了一下,主要的做法有两种。

01 配置环境变量支持

该方法的好处是不需要修改代码,通过配置环境变量就可以实现指定的GPU运行,缺点是缺乏灵活性,特别是想切换不同GPU实现模型推理的时候,这个方法就弊端就比较明显。

CUDA编程中支持的指定GPU设备的环境变量为:

CUDA_VISIBLE_DEVICES

通过该系统的环境变量可以设置指定的单个GPU编号或者多个GPU编号合集,然后在程序测试与调试环境中使用。通过这种方式指定GPU编号执行模型推理,就无需修改代码,实现在单一指定的GPU上运行TensorRT推理程序。

02 代码指定GPU设备执行

一台机器上可能有多个GPU设备,通过CUDA编程可以查询机器上所有的GPU设备,查询这些设备的属性以及决定使用哪个GPU设备作为当前设备。

cudaGetDeviceCount

该函数可以查询到当前机器上GPU设备数目,然后遍历查询每个GPU设备的属性。官方教程给出的代码如下:

根据查询的设备数目,GPU编号从0开始,默认情况下当前使用的设备就是编号为0的GPU设备,通过函数cudaSetDevice()可以修改运行时使用GPU设备,在初始化TensorRT之前,先通过cudaSetDevice()函数修改默认的当前设备,然后再初始化就可以把TensorRT的模型绑定到指定编号的GPU设备上推理。以我的笔记本上为例,设置当前的GPU设备,然后初始化TensorRT代码如下:

在多个GPU设备上执行多个模型推理的初始化代码如下:

关于延时加载

TensorRT8.6支持CUDA Lazy Loading(延时加载),开发者文档上说这种方式可以有效降低GPU显存与内存使用,加速初始化,节省模型初始化时间,可以通过环境变量配置实现延时加载支持,相关环境变量为:

CUDA_MODULE_LOADING=LAZY

参考资料:

https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multi-device
相关推荐
盼小辉丶3 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记3 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云3 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
AI街潜水的八角4 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
叫我:松哥5 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪6 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山6 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang7 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9157 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯7 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活