数据结构之线性表——LeetCode:707. 设计链表,206. 反转链表,92. 反转链表 II

707. 设计链表

题目描述

707. 设计链表

你可以选择使用单链表或者双链表,设计并实现自己的链表。

单链表中的节点应该具备两个属性:valnextval 是当前节点的值,next 是指向下一个节点的指针/引用。

如果是双向链表,则还需要属性 prev 以指示链表中的上一个节点。假设链表中的所有节点下标从 0 开始。

实现 MyLinkedList 类:

  • MyLinkedList() 初始化 MyLinkedList 对象。
  • int get(int index) 获取链表中下标为 index 的节点的值。如果下标无效,则返回 -1
  • void addAtHead(int val) 将一个值为 val 的节点插入到链表中第一个元素之前。在插入完成后,新节点会成为链表的第一个节点。
  • void addAtTail(int val) 将一个值为 val 的节点追加到链表中作为链表的最后一个元素。
  • void addAtIndex(int index, int val) 将一个值为 val 的节点插入到链表中下标为 index 的节点之前。如果 index 等于链表的长度,那么该节点会被追加到链表的末尾。如果 index 比长度更大,该节点将 不会插入 到链表中。
  • void deleteAtIndex(int index) 如果下标有效,则删除链表中下标为 index 的节点

运行代码

cpp 复制代码
class MyLinkedList {
public:
    MyLinkedList() {
        this->size = 0;
        this->head = new ListNode(0);
    }

    int get(int index) {
        if (index < 0 || index >= size) {
            return - 1;
        }
        ListNode* cur = head;
        for (int i = 0; i <= index; i++) {
            cur = cur->next;
        }
        return cur->val;
    }

    void addAtHead(int val) { addAtIndex(0, val); }

    void addAtTail(int val) { addAtIndex(size, val); }

    void addAtIndex(int index, int val) {
        if (index > size) {
            return;
        }
        index = max(0, index);
        size++;
        ListNode* pred = head;
        for (int i = 0; i < index; i++) {
            pred = pred->next;
        }
        ListNode* toAdd = new ListNode(val);
        toAdd->next = pred->next;
        pred->next = toAdd;
    }

    void deleteAtIndex(int index) {

        if (index < 0 || index >= size) {
            return;
        }
        size--;
        ListNode* pred = head;
        for (int i = 0; i < index; i++) {
            pred = pred->next;
        }
        ListNode* p = pred->next;
        pred->next = pred->next->next;
        delete p;
    }

private:
    int size;
    ListNode* head;
};

/**
 * Your MyLinkedList object will be instantiated and called as such:
 * MyLinkedList* obj = new MyLinkedList();
 * int param_1 = obj->get(index);
 * obj->addAtHead(val);
 * obj->addAtTail(val);
 * obj->addAtIndex(index,val);
 * obj->deleteAtIndex(index);
 */

代码思路

一、整体架构

这个类MyLinkedList模拟了一个链表数据结构,提供了初始化链表、获取特定位置节点值、在头部插入节点、在尾部插入节点、在特定位置插入节点以及删除特定位置节点等功能。

二、成员变量解释

  • size:记录链表中的节点数量。
  • head:一个虚拟头节点,方便链表的操作,其值初始为 0,实际链表从head->next开始。

三、函数分析

  1. 构造函数MyLinkedList():初始化链表时,将size设置为 0,表示链表中没有实际节点,同时创建一个虚拟头节点head

  2. get(int index)函数:首先检查输入的索引index是否合法,如果小于 0 或者大于等于链表的实际长度size,则返回 -1。然后从虚拟头节点开始遍历链表,遍历index + 1次(因为虚拟头节点不算实际节点),找到目标节点并返回其值。

  3. addAtHead(int val)函数:调用addAtIndex(0, val),实现在链表头部插入节点的功能。

  4. addAtTail(int val)函数:调用addAtIndex(size, val),实现在链表尾部插入节点的功能,因为当在长度为size的位置插入节点时,相当于在链表末尾追加节点。

  5. addAtIndex(int index, int val)函数:

    • 首先检查输入的索引index是否大于链表长度,如果是则直接返回,不进行插入操作。
    • 然后确保索引不小于 0,如果小于 0 则将其调整为 0,表示在头部插入节点。
    • 接着增加链表长度size
    • 从虚拟头节点开始遍历链表,找到要插入节点位置的前一个节点pred
    • 创建一个新节点toAdd,将其值设置为val,并将新节点的next指针指向pred的下一个节点,然后将prednext指针指向新节点,完成插入操作。
  6. deleteAtIndex(int index)函数:

    • 首先检查输入的索引index是否合法,如果不合法则直接返回。
    • 然后减少链表长度size
    • 从虚拟头节点开始遍历链表,找到要删除节点位置的前一个节点pred
    • 记录pred的下一个节点p,将prednext指针指向p的下一个节点,完成删除操作。最后释放被删除节点的内存。

206. 反转链表

题目描述

206. 反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

运行代码

cpp 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        ListNode* curr = head;
        ListNode* prev = nullptr;

        while (curr) {
            ListNode* temp = curr->next;
            curr->next = prev;
            prev = curr;
            curr = temp;
        }
        return prev;
    }
};

代码思路

  1. 接收一个指向单链表头节点的指针head作为参数。
  2. 定义三个指针currprevtemp。其中curr初始化为输入链表的头节点,用于遍历链表;prev初始化为nullptr,表示反转后的链表的末尾节点;temp用于临时存储当前节点的下一个节点,以防止在改变指针方向时丢失链表的后续部分。
  3. 进入while循环,循环条件是curr不为nullptr,即当还有未处理的节点时继续循环。

在每次循环中:首先,将temp指向当前节点curr的下一个节点,保存链表的后续部分。当循环结束时,currnullptr,此时prev指向反转后的链表的头节点,返回prev。然后,将当前节点currnext指针指向prev,即反转当前节点的指针方向,使其指向前一个节点。接着,将prev更新为当前节点curr,即将当前节点变为反转后的链表中的新的末尾节点。最后,将curr更新为temp,即继续处理下一个未处理的节点。

92. 反转链表 II

题目描述

92. 反转链表 II

给你单链表的头指针 head 和两个整数 leftright ,其中 left <= right 。请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表

运行代码

cpp 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode *reverseBetween(ListNode *head, int left, int right) {
        // 设置 dummyNode 是这一类问题的一般做法
        ListNode *dummyNode = new ListNode(-1);
        dummyNode->next = head;
        ListNode *pre = dummyNode;
        for (int i = 0; i < left - 1; i++) {
            pre = pre->next;
        }
        ListNode *cur = pre->next;
        ListNode *next;
        for (int i = 0; i < right - left; i++) {
            next = cur->next;
            cur->next = next->next;
            next->next = pre->next;
            pre->next = next;
        }
        return dummyNode->next;
    }
};

代码思路

一、整体思路

这段代码的目的是反转单链表中从位置left到位置right的部分。通过设置一个虚拟头节点dummyNode,并使用指针操作逐步反转指定区间的链表节点。

二、函数分析

  1. 接收单链表的头指针head以及两个整数leftright作为参数,表示要反转的链表区间的起始位置和结束位置。
  2. 首先创建一个虚拟头节点dummyNode,其值为 -1,将其next指针指向输入链表的头节点head。这样做是为了方便处理链表的头部反转情况,使得所有的操作可以统一处理。
  3. 定义指针pre初始化为dummyNode,这个指针将用于找到反转区间的前一个节点。通过循环,将pre移动到位置left - 1处,即反转区间的前一个位置。
  4. 接着定义指针curpre->next,即反转区间的第一个节点。再定义一个指针next用于临时存储当前节点的下一个节点。
  5. 进入一个循环,循环次数为right - left,即反转区间的长度。在每次循环中:
    • 首先,将next指向cur的下一个节点。
    • 然后,将curnext指针指向next的下一个节点,即跳过next节点。
    • 接着,将nextnext指针指向pre->next,即将next节点插入到反转区间的头部
    • 最后,将pre->next更新为next,即将新的头部节点与pre连接起来。。
    • 循环结束后,完成了指定区间的反转。最后返回dummyNode->next,即反转后的链表的头节点。
相关推荐
秋风&萧瑟12 分钟前
【数据结构】顺序队列与链式队列
linux·数据结构·windows
小孟Java攻城狮4 小时前
leetcode-不同路径问题
算法·leetcode·职场和发展
查理零世4 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
小猿_007 小时前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy233311 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖11 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙12 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了12 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光12 小时前
目标检测高频评价指标的计算过程
算法·yolo