spark读取数据性能提升

1. 背景

spark默认的jdbc只会用单task读取数据,读取大数据量时,效率低。

2. 解决方案

根据分区字段,如日期进行划分,增加task数量提升效率。

Scala 复制代码
  /**
    * 返回每个task按时间段划分的过滤语句
    * @param startDate
    * @param endDate
    * @param threadCount
    * @return
    */
  def getPredicateDates(startDate: String, endDate: String, threadCount: Int): Array[String] = {
    getPredicates(startDate, endDate, threadCount).map(x=>s"recordDate>='${x._1}' and recordDate <='${x._2}'")
  }


  /**
    * 将startDate到endDate间的日期,根据给定的threadCount参数,做时间段划分,例如:
    * getPredicates("2017-01-01", "2017-01-31", 10)
    * 返回:
    * 2017-01-01 -> 2017-01-04
    * 2017-01-05 -> 2017-01-08
    * 2017-01-09 -> 2017-01-12
    * 2017-01-13 -> 2017-01-16
    * 2017-01-17 -> 2017-01-20
    * 2017-01-21 -> 2017-01-24
    * 2017-01-25 -> 2017-01-28
    * 2017-01-29 -> 2017-01-31
    *
    * @param startDate   开始日期
    * @param endDate     结束日期
    * @param threadCount 线程数
    * @return 包含各个连续时段的数组
    */
  def getPredicates(startDate: String, endDate: String, threadCount: Int): Array[(String, String)] = {
    val dayDiff = DateTimeUtils.rangeDay(startDate, endDate)

    val buff = new ArrayBuffer[(String, String)]()

    if (dayDiff <= threadCount) {
      //天数差小于期望的线程数,则按照每天一个线程处理
      var tempDate = startDate
      while (tempDate <= endDate) {
        buff += (tempDate -> tempDate)
        tempDate = DateTimeUtils.dateAddOne(tempDate)
      }
    } else {
      //天数差大于期望的线程数,则按照线程数对时间段切分
      val offset = (dayDiff / threadCount).toInt
      var tempDate = startDate

      while (DateTimeUtils.dateAddN(tempDate, offset) <= endDate) {
        buff += (tempDate -> DateTimeUtils.dateAddN(tempDate, offset))
        tempDate = DateTimeUtils.dateAddOne(DateTimeUtils.dateAddN(tempDate, offset))
      }

      if (tempDate != endDate) {
        buff += (tempDate -> endDate)
      }
    }

    buff.toArray
  }
复制代码
DateTimeUtils工具类
Scala 复制代码
import java.text.SimpleDateFormat
import java.util.{Calendar, Date, Locale}

object DateTimeUtils {

  def rangeDay(startDateStr: String, endDateStr: String): Long = {
    val dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    val startDate: Date = dateFormat.parse(startDateStr)
    val endDate: Date = dateFormat.parse(endDateStr)

    (endDate.getTime() - startDate.getTime()) / 1000 / 60 / 60 / 24
  }


  def dateAddOne(dateStr: String): String = {
    var dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var dateInfo: Date = dateFormat.parse(dateStr)
    var cal: Calendar = Calendar.getInstance()
    cal.setTime(dateInfo)
    cal.add(Calendar.DATE, 1)
    dateFormat.format(cal.getTime)
  }

  def dateAddN(dateStr: String, value: Int): String = {
    var dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var dateInfo: Date = dateFormat.parse(dateStr)
    var cal: Calendar = Calendar.getInstance()
    cal.setTime(dateInfo)
    cal.add(Calendar.DATE, value)
    dateFormat.format(cal.getTime)
  }
}

举例

Scala 复制代码
    val startDate = DateTimeUtils.dateAddN(calcDate,-365) //获取计算日期一年前的日期作为开始时间
    val predicates= getPredicateDates(startDate,calcDate,12) //分12个task读取,提高性能
    val url = PropUtils.getProxyJdbc() //jdbc连接的代理(需按自己的项目实现)
    val res = spark.read.jdbc(url, tableName, predicates,PropUtils.getProperties()) 

3. 实验及结论

使用1个节点 8核16G的Clickhouse数据库,spark从clickhouse读取近4亿行数据。

单Task运行时间:14min

按日期划分成12个Task,运行时间:1.6min

结论:性能提升88.6%

相关推荐
艾莉丝努力练剑29 分钟前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
黑码哥1 小时前
ViewHolder设计模式深度剖析:iOS开发者掌握Android列表性能优化的实战指南
android·ios·性能优化·跨平台开发·viewholder
lili-felicity1 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_933670792 小时前
2026 高职大数据专业考什么证书对就业有帮助?
大数据
xiaobaibai1532 小时前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
星辰_mya2 小时前
Elasticsearch更新了分词器之后
大数据·elasticsearch·搜索引擎
xiaobaibai1532 小时前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
悟纤2 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
ESBK20252 小时前
第四届移动互联网、云计算与信息安全国际会议(MICCIS 2026)二轮征稿启动,诚邀全球学者共赴学术盛宴
大数据·网络·物联网·网络安全·云计算·密码学·信息与通信
Elastic 中国社区官方博客3 小时前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索