Spark解析JSON字符串

bash 复制代码
  {"zhang":{"pid":"alkjdlj","pname":"oweiwuio","page":"werwrw"}}

映射结构 : 第一层MAP,里面切套 MAP,key是String类型,value是string类型

bash 复制代码
val jsonMapper = MapType(StringType, MapType(StringType, StringType))

使用 schema_of_json 动态推断每个键的结构
s_desc 是传入的json格式的字段名称 , json_map是下文解析的变量值

bash 复制代码
    val dynamicResult = frame.withColumn("json_map", from_json(col("s_desc"), jsonMapper))
      // TODO:  person_key 是第一层嵌套的值,必须用这个名称才能取到,explode函数对json_map进行行转列
      .select(explode(col("json_map")).as(Seq("person_key", "person_data")))
      // TODO: 每一列里面进行取值
      .select(
        col("person_key"),
        col("person_data").getItem("pid").as("pid"),
        col("person_data").getItem("pname").as("pname"),
        col("person_data").getItem("page").as("page")
      )
bash 复制代码
package com.zxl

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.dsl.expressions.{DslExpression, StringToAttributeConversionHelper}
import org.apache.spark.sql.functions.{col, explode, from_json, get_json_object, posexplode}
import org.apache.spark.sql.types.{IntegerType, MapType, StringType, StructField, StructType}

import java.util.Properties

object JSONTest {
  def main(args: Array[String]): Unit = {
    // TODO: 创建上下文
    val sparkName = new SparkConf().setMaster("local[*]").setAppName("sparkName")
    // TODO: 创建sparkSession
    val session = SparkSession.builder().config(sparkName).getOrCreate()
    // TODO: 配置JDBC配置,连接mysql
    val props: Properties = new Properties()
    props.setProperty("user", "root")
    props.setProperty("password", "1234")
    // TODO: 配置 school 表连接
    val school = session.read.jdbc("jdbc:mysql://localhost:3306/world", "school", props)
    // TODO: 注册视图表 school
    school.createOrReplaceTempView("school")
    val frame = session.sql("select * from school")

    // TODO:  {"zhang":{"pid":"alkjdlj","pname":"oweiwuio","page":"werwrw"}}
    // TODO: 映射结构 : 第一层MAP,里面切套 MAP,key是String类型,value是string类型
    val jsonMapper = MapType(StringType, MapType(StringType, StringType))
    // TODO:   使用 schema_of_json 动态推断每个键的结构
    // TODO:  s_desc 是传入的json格式的字段名称 , json_map是下文解析的变量值
    val dynamicResult = frame.withColumn("json_map", from_json(col("s_desc"), jsonMapper))
      // TODO:  person_key 是第一层嵌套的值,必须用这个名称才能取到,explode函数对json_map进行行转列
      .select(explode(col("json_map")).as(Seq("person_key", "person_data")))
      // TODO: 每一列里面进行取值
      .select(
        col("person_key"),
        col("person_data").getItem("pid").as("pid"),
        col("person_data").getItem("pname").as("pname"),
        col("person_data").getItem("page").as("page")
      )

    dynamicResult.createOrReplaceTempView("zhangMs")


    // TODO: 配置 person 表连接
    val person = session.read.jdbc("jdbc:mysql://localhost:3306/world", "person", props)
    // TODO: 注册视图表 person
    person.createOrReplaceTempView("person")
    session.sql("select * from zhangMs Left join person on zhangMs.person_key=person.pid").show()



    session.stop()
    session.close()
  }
}
相关推荐
毕设源码-赖学姐42 分钟前
【开题答辩全过程】以 基于Spark的全球地震信息数据可视化分析平台研究为例,包含答辩的问题和答案
大数据·信息可视化·spark
PS1232321 小时前
城市安全建设中的风环境监测解决方案
大数据·人工智能
wtsolutions1 小时前
JSON转Excel工具新增WPS插件功能,将JSON转换成WPS表格工作表数据
json·excel·wps·插件·转换·加载项·wtsolutions
学习中的阿陈1 小时前
flume安装
大数据·flume
路边草随风1 小时前
java 实现 flink cdc 读 mysql binlog 按表写入kafka不同topic
java·大数据·mysql·flink
开始了码1 小时前
qt::JSON文件介绍和操作
qt·json
safestar20121 小时前
Elasticsearch与SelectDB的正面对决:日志分析场景的架构深度调优与选型指南
大数据·elasticsearch·架构
SongYuLong的博客1 小时前
C++基于jsoncpp开源库json数据操作
开发语言·c++·json
老蒋新思维2 小时前
创客匠人峰会复盘:AI 时代知识变现,从流量思维到共识驱动的系统重构
大数据·人工智能·tcp/ip·重构·创始人ip·创客匠人·知识变现