nonlocal本质讲解(前篇)——从滤波到Nonlocal均值滤波

线性滤波 → \rightarrow →高斯滤波 → \rightarrow →高斯滤波 → \rightarrow →双边滤波 → \rightarrow →Nonlocal均值滤波

平均

高斯

双边

Nonlocal

目录

滤波最初是频域的概念,由于频域乘积对应空域卷积,所以在空域就用卷积实现,然而卷积也就是线性组合,在图像处理中反转不反转不重要,设计系数时转了就行,然后就成了互相关,实际理解也是模板匹配,mask和template中文都翻译为模板(掩膜的翻译不说人话),小的模板叫mask,大的就叫template。卷积就这么来了。

线性滤波

这条线围绕这个表达式展开,创新总是一步一步的向前迈进。

线性滤波的权系数是固定值。

附:

高斯滤波

权系数是高斯函数


双边滤波

在高斯滤波的基础上,增加了值域的高斯函数。线性变为非线性,从此,权系数与像素值有关,每个位置处的系数不同。





Nonlocal均值滤波

以上还是local(邻域或局部,更准确的意思是邻域 ,请不要翻译为本地),由于图像具有自相似性,提出了nonlocal,最初是global,后来扩展到搜索窗口,反正是非local了。

在那个时候,高斯还是那个高斯,实际上是双边滤波中的值域平滑,空域平滑没用了,由于图像具有自相似性,从单像素扩展到邻域,增加稳定性。

那个高斯加权欧氏距离,MATLAB没有用,就是用的欧氏距离。

非局部均值滤波方法本质上利用图像块的相似性,将相似图像块中心像素的加权平均值作为当前图像块中心像素的估计,权系数由两个图像块之间的相似度 决定。对像素P的加权平均贡献实际上主要源于这些相似图像块的中心像素Q,而非相似图像块的权系数很小,对像素P滤波的贡献则很小。非局部处理利用图像块的相似结构不仅能够有效去除图像中的噪声,而且能够有效保持图像的空间细节。

相关推荐
xixixi777772 小时前
从“视觉感知”到“逻辑结构”的转化,是计算机从“看到像素”到“理解含义”的认知飞跃
图像处理·图形渲染·逻辑结构·视觉感知
roman_日积跬步-终至千里2 小时前
【模式识别与机器学习】机器学习练习题集 - 答案与解析
人工智能·机器学习
ekprada3 小时前
DAY 30 模块和库的导入
机器学习
白日做梦Q3 小时前
深度学习与机器学习的3个关键区别
人工智能·深度学习·机器学习
free-elcmacom4 小时前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
代码输入中...4 小时前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
TextIn智能文档云平台4 小时前
怎么批量将扫描件变成文档?
人工智能·机器学习
new2826 小时前
Pixel level fusion techniques for SAR and optical images A review
图像处理
xiaozi41207 小时前
Ruey S. Tsay《时间序列分析》Python实现笔记:综合与应用
开发语言·笔记·python·机器学习
黎茗Dawn7 小时前
DDPM-KL 散度与 L2 损失
人工智能·算法·机器学习