nonlocal本质讲解(前篇)——从滤波到Nonlocal均值滤波

线性滤波 → \rightarrow →高斯滤波 → \rightarrow →高斯滤波 → \rightarrow →双边滤波 → \rightarrow →Nonlocal均值滤波

平均

高斯

双边

Nonlocal

目录

滤波最初是频域的概念,由于频域乘积对应空域卷积,所以在空域就用卷积实现,然而卷积也就是线性组合,在图像处理中反转不反转不重要,设计系数时转了就行,然后就成了互相关,实际理解也是模板匹配,mask和template中文都翻译为模板(掩膜的翻译不说人话),小的模板叫mask,大的就叫template。卷积就这么来了。

线性滤波

这条线围绕这个表达式展开,创新总是一步一步的向前迈进。

线性滤波的权系数是固定值。

附:

高斯滤波

权系数是高斯函数


双边滤波

在高斯滤波的基础上,增加了值域的高斯函数。线性变为非线性,从此,权系数与像素值有关,每个位置处的系数不同。





Nonlocal均值滤波

以上还是local(邻域或局部,更准确的意思是邻域 ,请不要翻译为本地),由于图像具有自相似性,提出了nonlocal,最初是global,后来扩展到搜索窗口,反正是非local了。

在那个时候,高斯还是那个高斯,实际上是双边滤波中的值域平滑,空域平滑没用了,由于图像具有自相似性,从单像素扩展到邻域,增加稳定性。

那个高斯加权欧氏距离,MATLAB没有用,就是用的欧氏距离。

非局部均值滤波方法本质上利用图像块的相似性,将相似图像块中心像素的加权平均值作为当前图像块中心像素的估计,权系数由两个图像块之间的相似度 决定。对像素P的加权平均贡献实际上主要源于这些相似图像块的中心像素Q,而非相似图像块的权系数很小,对像素P滤波的贡献则很小。非局部处理利用图像块的相似结构不仅能够有效去除图像中的噪声,而且能够有效保持图像的空间细节。

相关推荐
蚍蜉撼树谈何易1 小时前
机器学习的定义及分类
人工智能·机器学习·分类
gang_unerry8 小时前
量子退火与机器学习(2):少量实验即可找到新材料,黑盒优化➕量子退火
人工智能·机器学习·量子计算·量子退火
Chaos_Wang_9 小时前
NLP高频面试题(二十八)——Reward model是如何训练的,怎么训练一个比较好的Reward model
人工智能·机器学习·自然语言处理
vonchenchen110 小时前
nara wpe去混响学习笔记
机器学习·音视频·音频·信息与通信·信号处理
邴越11 小时前
人工智能、机器学习经典计算机课程
人工智能·机器学习
Shockang13 小时前
机器学习的一百个概念(6)最小最大缩放
人工智能·机器学习
滴答滴答嗒嗒滴15 小时前
用 Python 实现机器学习小项目:从入门到实战
开发语言·python·机器学习
IT古董15 小时前
【漫话机器学习系列】173.模型可识别度(Model Identifiability)
人工智能·机器学习
神经星星15 小时前
在线教程丨YOLO系列重要创新!清华团队发布YOLOE,直击开放场景物体实时检测与分割
人工智能·深度学习·机器学习
Elastic 中国社区官方博客19 小时前
Elasticsearch:理解政府中的人工智能 - 应用、使用案例和实施
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·全文检索