nonlocal本质讲解(前篇)——从滤波到Nonlocal均值滤波

线性滤波 → \rightarrow →高斯滤波 → \rightarrow →高斯滤波 → \rightarrow →双边滤波 → \rightarrow →Nonlocal均值滤波

平均

高斯

双边

Nonlocal

目录

滤波最初是频域的概念,由于频域乘积对应空域卷积,所以在空域就用卷积实现,然而卷积也就是线性组合,在图像处理中反转不反转不重要,设计系数时转了就行,然后就成了互相关,实际理解也是模板匹配,mask和template中文都翻译为模板(掩膜的翻译不说人话),小的模板叫mask,大的就叫template。卷积就这么来了。

线性滤波

这条线围绕这个表达式展开,创新总是一步一步的向前迈进。

线性滤波的权系数是固定值。

附:

高斯滤波

权系数是高斯函数


双边滤波

在高斯滤波的基础上,增加了值域的高斯函数。线性变为非线性,从此,权系数与像素值有关,每个位置处的系数不同。





Nonlocal均值滤波

以上还是local(邻域或局部,更准确的意思是邻域 ,请不要翻译为本地),由于图像具有自相似性,提出了nonlocal,最初是global,后来扩展到搜索窗口,反正是非local了。

在那个时候,高斯还是那个高斯,实际上是双边滤波中的值域平滑,空域平滑没用了,由于图像具有自相似性,从单像素扩展到邻域,增加稳定性。

那个高斯加权欧氏距离,MATLAB没有用,就是用的欧氏距离。

非局部均值滤波方法本质上利用图像块的相似性,将相似图像块中心像素的加权平均值作为当前图像块中心像素的估计,权系数由两个图像块之间的相似度 决定。对像素P的加权平均贡献实际上主要源于这些相似图像块的中心像素Q,而非相似图像块的权系数很小,对像素P滤波的贡献则很小。非局部处理利用图像块的相似结构不仅能够有效去除图像中的噪声,而且能够有效保持图像的空间细节。

相关推荐
HyperAI超神经2 分钟前
在线教程丨端侧TTS新SOTA!NeuTTS-Air基于0.5B模型实现3秒音频克隆
人工智能·深度学习·机器学习·音视频·tts·音频克隆·neutts-air
躺平的赶海人26 分钟前
Halcon实战:精准定位与提取:基于形态学处理的猴子眼睛区域检测完整方案
图像处理·计算机视觉·halcon·形态学操作
Godspeed Zhao29 分钟前
自动驾驶中的传感器技术76——Navigation(13)
人工智能·机器学习·自动驾驶
数据与后端架构提升之路31 分钟前
在自动驾驶数据闭环中的特征工程应用(上)
机器学习·自动驾驶·特征工程
智塑未来35 分钟前
广州全运会即将开幕,获得文远知行自动驾驶技术支持
人工智能·机器学习·自动驾驶
_Poseidon1 小时前
多模态机器学习
人工智能·机器学习
武子康2 小时前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
萧鼎2 小时前
深入掌握 OpenCV-Python:从图像处理到智能视觉
图像处理·python·opencv
lin__ying3 小时前
机器学习-聚类
算法·机器学习
武子康4 小时前
AI研究-118 具身智能 Mobile-ALOHA 解读:移动+双臂模仿学习的开源方案(含论文/代码/套件链接)
人工智能·深度学习·学习·机器学习·ai·开源·模仿学习