ISP去噪(3)_图像的高频分量和低频分量

#图像分析# 总是不好确认头发和毛绒玩具到底是低频还是高频分量。现在得出结论,头发和毛绒玩具都是高频信息,因为细节很多。

目录

图像的频率

[(1) 什么是低频?](#(1) 什么是低频?)

[(2) 什么是高频?](#(2) 什么是高频?)

(3)低频和高频对比

[(4)去除高频 或者 低频信息](#(4)去除高频 或者 低频信息)

(5)图像DCT变换滤除高频分量


图像的频率

灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。

(1) 什么是低频?

低频就是颜色缓慢地变化,也就是灰度缓慢地变化,反映在下图右 是黑色和灰色连续渐变的一块区域,这部分就是低频。对于一幅图像来说,边缘线以内的内容为低频,而这些内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的主要信息。

(2) 什么是高频?

反过来,高频就是频率变化快。图像中什么时候灰度变化快?就是相邻区域之间灰度相差很大,这就是变化得快。

图像中,一个影像与背景的边缘部位,通常会有明显的差别,也就是说那条边缘线那里,灰度变化很快,这就是变化频率高的部位(比如上图左 的素描轮廓)。

综上:图像边缘的灰度值变化快,就对应着频率高,即高频显示图像边缘。

除了图像的边缘,图像的细节处也是属于灰度值急剧变化的区域(比如下图截选的分辨率测试图),正是因为灰度值的急剧变化,才会出现细节。

另外噪声(即噪点)也是这样,在一个像素所在的位置,之所以是噪点,就是因为它与正常的点颜色不一样了,也就是说该像素点灰度值明显不一样了,,也就是灰度有快速地变化了,所以是高频部分,因此有噪声在高频这么一说。------ISP中,去除噪声必然伴随着细节的损失

(3)低频和高频对比

低频保留了光影与颜色,高频保留了纹理与质感。

(4)去除高频 或者 低频信息

经过低通滤波器处理。保留低频信息,去除高频信息。图像细节部分丢失,图像变模糊。

经过高通滤波器处理,也就是去除频率域中的低频信息,只保存高频信息后的结果。图像只保留了细节部分。

(5)图像DCT变换滤除高频分量

JPEG 图像压缩是利用人眼对低频信息比较敏感和对高频信息比较不敏感的原理。经过 DCT变换后的8x8系数矩阵中,低频成分集中在矩阵的左上角,高频成分则集中在右下角。由于大多数图像的高频分量比较小,相应的图像高频分量的DCT系数往往接近于0。考虑到高频分量中只包含了图像中细微的细节变化信息,而人眼又对这些高频成分的失真不太敏感,所以,可以考虑将这些高频成分予以抛弃,从而达到压缩图像的目的:

如下图所示为保留DCT变换后系数的比例,可以看到仅保留左上角32%的系数基本就可以让人眼看不出来变化。

相关推荐
棒棒的皮皮2 分钟前
【OpenCV】Python图像处理之位平面分解
图像处理·python·opencv·计算机视觉
c#上位机11 小时前
halcon图像增强之自动灰度拉伸
图像处理·算法·c#·halcon·图像增强
三好kiii17 小时前
海康威视热成像摄像头温度矩阵提取实战:ISAPI + Python 实现无 SDK 读取
图像处理·python
weixin_4573402118 小时前
旋转OBB数据集标注查看器
图像处理·人工智能·python·yolo·目标检测·数据集·旋转
轻赚时代19 小时前
PC 端 AI 图像处理工具实操指南:抠图 / 证件照优化 / 智能擦除全流程解析
图像处理·人工智能·经验分享·笔记·深度学习·创业创新·学习方法
plmm烟酒僧20 小时前
OpenVINO 推理 YOLO Demo 分享 (Python)
图像处理·人工智能·python·yolo·openvino·runtime·推理
AI即插即用20 小时前
即插即用系列 | CVPR 2024 ABC-Attention:基于双线性相关注意力的红外小目标检测
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
AndrewHZ21 小时前
【图像处理基石】纹理的定量分析入门
图像处理·计算机视觉·cv·特征提取·算法入门·纹理定量分析
Coding茶水间21 小时前
基于深度学习的水稻虫害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉