对条件语言模型(Conditional Language Model)的目标函数的理解

在翻看LORA这篇论文的时候,忽然对条件语言模型优化的目标函数产生了一些疑问,下面是理解。

这个目标函数描述了条件语言模型(Conditional Language Model)的目标,即通过最大化对数似然估计来学习参数( Φ \Phi Φ),从而使模型能够根据给定的输入序列(x)来生成输出序列(y)。

目标函数解释

max ⁡ Φ ∑ ( x , y ) ∈ Z ∑ t = 1 ∣ y ∣ log ⁡ ( P Φ ( y t ∣ x , y < t ) ) \max_{\Phi}\sum_{(x,y)\in\mathcal{Z}}\sum_{t=1}^{|y|}\log\left(P_\Phi(y_t|x,y_{<t})\right) Φmax(x,y)∈Z∑t=1∑∣y∣log(PΦ(yt∣x,y<t))

这表示在所有输入-输出对((x, y))的训练数据集( Z \mathcal{Z} Z)上,最大化对数似然函数。该函数的主要部分可以分为两层嵌套的求和,表示:

  1. 外层求和 :遍历训练数据集( Z \mathcal{Z} Z),其中每一个样本包含输入序列(x)和输出序列(y)。
  2. 内层求和:对输出序列(y)中的每个位置(t)进行求和,计算输出序列中每个词或token的条件概率。
( P Φ ( y t ∣ x , y < t ) P_\Phi(y_t | x, y_{<t}) PΦ(yt∣x,y<t)) 的含义

P Φ ( y t ∣ x , y < t ) P_\Phi(y_t | x, y_{<t}) PΦ(yt∣x,y<t) 表示给定输入序列(x)以及输出序列中位置(t)之前的所有token(即( y < t y_{<t} y<t),也就是序列(y)中从1到(t-1)的部分),模型预测在位置(t)的token ( y t y_t yt)的条件概率。这是典型的自回归模型的思想,表示输出序列是一个依赖于之前已生成部分的序列。

逐项解释

  • ( max ⁡ Φ \max_{\Phi} maxΦ):我们通过优化参数(\Phi)来最大化目标函数。这里的(\Phi)是模型的参数集,可能包括神经网络的权重、偏置等。

  • ( ∑ ( x , y ) ∈ Z \sum_{(x,y)\in\mathcal{Z}} ∑(x,y)∈Z):对训练数据集中所有的((x, y))对进行求和,((x, y))是数据集中一个样本,(x)是输入序列,(y)是目标输出序列。

  • ( ∑ t = 1 ∣ y ∣ \sum_{t=1}^{|y|} ∑t=1∣y∣) :对输出序列(y)中的每一个位置(t)进行求和,(|y|)表示序列(y)的长度。目标是对每个输出token ( y t y_t yt)进行建模。

  • ( log ⁡ ( P Φ ( y t ∣ x , y < t ) ) \log(P_\Phi(y_t | x, y_{<t})) log(PΦ(yt∣x,y<t))) :这是条件语言模型的对数概率,表示给定输入序列(x)和之前已经生成的部分输出序列( y < t y_{<t} y<t)(即(y)从1到(t-1)位置的子序列),模型生成( y t y_t yt)的对数概率。对数是为了将概率转换为可以累加的量,使得更方便进行求和和优化。

总结

该目标函数的本质是在所有训练样本((x, y))上最大化输出序列每个位置(t)上的条件概率( P Φ ( y t ∣ x , y < t ) P_\Phi(y_t | x, y_{<t}) PΦ(yt∣x,y<t)),即给定输入和之前的输出,预测当前位置的输出的概率。通过最大化这一目标函数,我们训练模型使其能够根据输入和部分已生成的输出来正确预测后续的输出。这是条件语言模型如Transformer、BERT、GPT等语言生成任务的常见目标。

后记

2024年9月23日17点47分于上海,基于GPT4o大模型生成。

相关推荐
聚客AI12 分钟前
📈超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
人工智能·llm·agent
北极光SD-WAN组网27 分钟前
某电器5G智慧工厂网络建设全解析
人工智能·物联网·5g
十八岁牛爷爷29 分钟前
通过官方文档详解Ultralytics YOLO 开源工程-熟练使用 YOLO11实现分割、分类、旋转框检测和姿势估计(附测试代码)
人工智能·yolo·目标跟踪
阿杜杜不是阿木木1 小时前
什么?OpenCV调用cv2.putText()乱码?寻找支持中文的方法之旅
人工智能·opencv·计算机视觉
赴3351 小时前
图像边缘检测
人工智能·python·opencv·计算机视觉
机器视觉知识推荐、就业指导2 小时前
如何消除工业视觉检测中的反光问题
人工智能·计算机视觉·视觉检测
周润发的弟弟2 小时前
2025年Java在中国开发语言排名分析报告
人工智能
杭州泽沃电子科技有限公司2 小时前
工业环境电缆火灾预防的分布式光纤在线监测
运维·人工智能·科技·安全
没有梦想的咸鱼185-1037-16632 小时前
AI大模型支持下的:CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·python·深度学习·机器学习·chatgpt·数据挖掘·数据分析
柠檬味拥抱3 小时前
基于自适应信号处理的AI Agent多任务协同控制方法研究
人工智能