[深度学习]卷积神经网络CNN

1 图像基础知识

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
# 图像数据
#img=np.zeros((200,200,3))
img=np.full((200,200,3),255)
# 可视化
plt.imshow(img)
plt.show()
python 复制代码
# 图像读取
img=plt.imread('img.jpg')
plt.imshow(img)
plt.show()

2 CNN概述

  • 卷积层conv+relu
  • 池化层pool
  • 全连接层FC/Linear

3 卷积层

python 复制代码
import matplotlib.pyplot as plt
import torch
from torch import nn
# 数据
img=plt.imread('img.jpg')
print(img.shape)
# conv
img=torch.tensor(img).permute(2,0,1).unsqueeze(0).to(torch.float32)
conv=nn.Conv2d(in_channels=3,out_channels=5,kernel_size=(3,5),stride=(1,2),padding=2)
# 处理
fm=conv(img)
print(fm.shape)

4 池化层

  • 下采样:样本减少
  • 上采样(深采样):样本增多
  • 最大池化相交平均池化使用更多
  • 通常kernel_size=(3,3),stride=(2,2),padding=(自定义)
python 复制代码
import torch
from torch import nn
# 创建数据
torch.random.manual_seed(22)
data=torch.randint(0,10,[1,3,3],dtype=torch.float32)
print(data)

python 复制代码
# 最大池化
pool=nn.MaxPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

python 复制代码
# 平均池化
pool=nn.AvgPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

5 图像分类案例(LeNet)

python 复制代码
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import matplotlib.pyplot as plt
from torchsummary import summary
from torch import optim
from torch.utils.data import DataLoader
# 获取数据
train_dataset=CIFAR10(root='cnn_net',train=True,transform=Compose([ToTensor()]),download=True)
test_dataset=CIFAR10(root='cnn_net',train=False,transform=Compose([ToTensor()]),download=True)
print(train_dataset.class_to_idx)
print(train_dataset.data.shape)
print(test_dataset.data.shape)
python 复制代码
plt.imshow(test_dataset.data[100])
plt.show()
print(test_dataset.targets[100])
python 复制代码
# 模型构建
class ImageClassification(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
        self.fc1=nn.Linear(in_features=576,out_features=120)
        self.fc2=nn.Linear(in_features=120,out_features=84)
        self.out=nn.Linear(in_features=84,out_features=10)
    def forward(self,x):
         x=self.pool1(torch.relu(self.conv1(x)))
         x=self.pool2(torch.relu(self.conv2(x)))
         x=x.reshape(x.size(0),-1)
         x=torch.relu(self.fc1(x))
         x=torch.relu(self.fc2(x))
         out=self.out(x)
         return out

model=ImageClassification()
summary(model,(3,32,32),batch_size=1)
bash 复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1             [1, 6, 30, 30]             168
         MaxPool2d-2             [1, 6, 15, 15]               0
            Conv2d-3            [1, 16, 13, 13]             880
         MaxPool2d-4              [1, 16, 6, 6]               0
            Linear-5                   [1, 120]          69,240
            Linear-6                    [1, 84]          10,164
            Linear-7                    [1, 10]             850
================================================================
Total params: 81,302
Trainable params: 81,302
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.08
Params size (MB): 0.31
Estimated Total Size (MB): 0.40
----------------------------------------------------------------
python 复制代码
# 模型训练
optimizer=optim.Adam(model.parameters(),lr=0.0001,betas=[0.9,0.99])
error=nn.CrossEntropyLoss()
epoches=10
for epoch in range(epoches):
    dataloader=DataLoader(train_dataset,batch_size=2,shuffle=True)
    loss_sum=0
    num=0.1
    for x,y in dataloader:
        y_=model(x)
        loss=error(y_,y)
        loss_sum+=loss.item()
        num+=1
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(loss_sum/num)
# 模型保存
torch.save(model.state_dict(),'model.pth')
python 复制代码
# 模型预测
test_dataloader=DataLoader(test_dataset,batch_size=8,shuffle=False)
model.load_state_dict(torch.load('model.pth',weights_only=False))
corr=0
num=0
for x,y in test_dataloader:
    y_=model(x)
    out=torch.argmax(y_,dim=-1)
    corr+=(out==y).sum()
    num+=len(y)
    
print(corr/num)
    

优化方向

相关推荐
Chef_Chen4 分钟前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博5 分钟前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
Sxiaocai21 分钟前
使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类
pytorch·深度学习·分类
GL_Rain22 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun27 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生29 分钟前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
baiduopenmap44 分钟前
百度世界2024精选公开课:基于地图智能体的导航出行AI应用创新实践
前端·人工智能·百度地图
小任同学Alex1 小时前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
新加坡内哥谈技术1 小时前
微软 Ignite 2024 大会
人工智能
江瀚视野1 小时前
Q3净利增长超预期,文心大模型调用量大增,百度未来如何分析?
人工智能