[深度学习]卷积神经网络CNN

1 图像基础知识

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
# 图像数据
#img=np.zeros((200,200,3))
img=np.full((200,200,3),255)
# 可视化
plt.imshow(img)
plt.show()
python 复制代码
# 图像读取
img=plt.imread('img.jpg')
plt.imshow(img)
plt.show()

2 CNN概述

  • 卷积层conv+relu
  • 池化层pool
  • 全连接层FC/Linear

3 卷积层

python 复制代码
import matplotlib.pyplot as plt
import torch
from torch import nn
# 数据
img=plt.imread('img.jpg')
print(img.shape)
# conv
img=torch.tensor(img).permute(2,0,1).unsqueeze(0).to(torch.float32)
conv=nn.Conv2d(in_channels=3,out_channels=5,kernel_size=(3,5),stride=(1,2),padding=2)
# 处理
fm=conv(img)
print(fm.shape)

4 池化层

  • 下采样:样本减少
  • 上采样(深采样):样本增多
  • 最大池化相交平均池化使用更多
  • 通常kernel_size=(3,3),stride=(2,2),padding=(自定义)
python 复制代码
import torch
from torch import nn
# 创建数据
torch.random.manual_seed(22)
data=torch.randint(0,10,[1,3,3],dtype=torch.float32)
print(data)

python 复制代码
# 最大池化
pool=nn.MaxPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

python 复制代码
# 平均池化
pool=nn.AvgPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

5 图像分类案例(LeNet)

python 复制代码
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import matplotlib.pyplot as plt
from torchsummary import summary
from torch import optim
from torch.utils.data import DataLoader
# 获取数据
train_dataset=CIFAR10(root='cnn_net',train=True,transform=Compose([ToTensor()]),download=True)
test_dataset=CIFAR10(root='cnn_net',train=False,transform=Compose([ToTensor()]),download=True)
print(train_dataset.class_to_idx)
print(train_dataset.data.shape)
print(test_dataset.data.shape)
python 复制代码
plt.imshow(test_dataset.data[100])
plt.show()
print(test_dataset.targets[100])
python 复制代码
# 模型构建
class ImageClassification(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
        self.fc1=nn.Linear(in_features=576,out_features=120)
        self.fc2=nn.Linear(in_features=120,out_features=84)
        self.out=nn.Linear(in_features=84,out_features=10)
    def forward(self,x):
         x=self.pool1(torch.relu(self.conv1(x)))
         x=self.pool2(torch.relu(self.conv2(x)))
         x=x.reshape(x.size(0),-1)
         x=torch.relu(self.fc1(x))
         x=torch.relu(self.fc2(x))
         out=self.out(x)
         return out

model=ImageClassification()
summary(model,(3,32,32),batch_size=1)
bash 复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1             [1, 6, 30, 30]             168
         MaxPool2d-2             [1, 6, 15, 15]               0
            Conv2d-3            [1, 16, 13, 13]             880
         MaxPool2d-4              [1, 16, 6, 6]               0
            Linear-5                   [1, 120]          69,240
            Linear-6                    [1, 84]          10,164
            Linear-7                    [1, 10]             850
================================================================
Total params: 81,302
Trainable params: 81,302
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.08
Params size (MB): 0.31
Estimated Total Size (MB): 0.40
----------------------------------------------------------------
python 复制代码
# 模型训练
optimizer=optim.Adam(model.parameters(),lr=0.0001,betas=[0.9,0.99])
error=nn.CrossEntropyLoss()
epoches=10
for epoch in range(epoches):
    dataloader=DataLoader(train_dataset,batch_size=2,shuffle=True)
    loss_sum=0
    num=0.1
    for x,y in dataloader:
        y_=model(x)
        loss=error(y_,y)
        loss_sum+=loss.item()
        num+=1
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(loss_sum/num)
# 模型保存
torch.save(model.state_dict(),'model.pth')
python 复制代码
# 模型预测
test_dataloader=DataLoader(test_dataset,batch_size=8,shuffle=False)
model.load_state_dict(torch.load('model.pth',weights_only=False))
corr=0
num=0
for x,y in test_dataloader:
    y_=model(x)
    out=torch.argmax(y_,dim=-1)
    corr+=(out==y).sum()
    num+=len(y)
    
print(corr/num)
    

优化方向

相关推荐
AgeClub12 分钟前
服务600+养老社区,Rendever如何通过“VR+养老”缓解老年孤独?
大数据·人工智能
rocksun22 分钟前
OneUptime MCP服务器:AI原生可观测性融入你的工作流程
人工智能·监控
weisian15131 分钟前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
静心问道1 小时前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
芷栀夏1 小时前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
AI生存日记1 小时前
AI 日报:阿里、字节等企业密集发布新技术,覆盖语音、图像与药物研发等领域
人工智能·华为云·语音识别·open ai大模型
hjs_deeplearning1 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
瑶光守护者1 小时前
【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估
深度学习·华为·卫星通信·3gpp·ulbc
kngines2 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
.30-06Springfield4 小时前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm