[深度学习]卷积神经网络CNN

1 图像基础知识

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
# 图像数据
#img=np.zeros((200,200,3))
img=np.full((200,200,3),255)
# 可视化
plt.imshow(img)
plt.show()
python 复制代码
# 图像读取
img=plt.imread('img.jpg')
plt.imshow(img)
plt.show()

2 CNN概述

  • 卷积层conv+relu
  • 池化层pool
  • 全连接层FC/Linear

3 卷积层

python 复制代码
import matplotlib.pyplot as plt
import torch
from torch import nn
# 数据
img=plt.imread('img.jpg')
print(img.shape)
# conv
img=torch.tensor(img).permute(2,0,1).unsqueeze(0).to(torch.float32)
conv=nn.Conv2d(in_channels=3,out_channels=5,kernel_size=(3,5),stride=(1,2),padding=2)
# 处理
fm=conv(img)
print(fm.shape)

4 池化层

  • 下采样:样本减少
  • 上采样(深采样):样本增多
  • 最大池化相交平均池化使用更多
  • 通常kernel_size=(3,3),stride=(2,2),padding=(自定义)
python 复制代码
import torch
from torch import nn
# 创建数据
torch.random.manual_seed(22)
data=torch.randint(0,10,[1,3,3],dtype=torch.float32)
print(data)

python 复制代码
# 最大池化
pool=nn.MaxPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

python 复制代码
# 平均池化
pool=nn.AvgPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

5 图像分类案例(LeNet)

python 复制代码
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import matplotlib.pyplot as plt
from torchsummary import summary
from torch import optim
from torch.utils.data import DataLoader
# 获取数据
train_dataset=CIFAR10(root='cnn_net',train=True,transform=Compose([ToTensor()]),download=True)
test_dataset=CIFAR10(root='cnn_net',train=False,transform=Compose([ToTensor()]),download=True)
print(train_dataset.class_to_idx)
print(train_dataset.data.shape)
print(test_dataset.data.shape)
python 复制代码
plt.imshow(test_dataset.data[100])
plt.show()
print(test_dataset.targets[100])
python 复制代码
# 模型构建
class ImageClassification(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
        self.fc1=nn.Linear(in_features=576,out_features=120)
        self.fc2=nn.Linear(in_features=120,out_features=84)
        self.out=nn.Linear(in_features=84,out_features=10)
    def forward(self,x):
         x=self.pool1(torch.relu(self.conv1(x)))
         x=self.pool2(torch.relu(self.conv2(x)))
         x=x.reshape(x.size(0),-1)
         x=torch.relu(self.fc1(x))
         x=torch.relu(self.fc2(x))
         out=self.out(x)
         return out

model=ImageClassification()
summary(model,(3,32,32),batch_size=1)
bash 复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1             [1, 6, 30, 30]             168
         MaxPool2d-2             [1, 6, 15, 15]               0
            Conv2d-3            [1, 16, 13, 13]             880
         MaxPool2d-4              [1, 16, 6, 6]               0
            Linear-5                   [1, 120]          69,240
            Linear-6                    [1, 84]          10,164
            Linear-7                    [1, 10]             850
================================================================
Total params: 81,302
Trainable params: 81,302
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.08
Params size (MB): 0.31
Estimated Total Size (MB): 0.40
----------------------------------------------------------------
python 复制代码
# 模型训练
optimizer=optim.Adam(model.parameters(),lr=0.0001,betas=[0.9,0.99])
error=nn.CrossEntropyLoss()
epoches=10
for epoch in range(epoches):
    dataloader=DataLoader(train_dataset,batch_size=2,shuffle=True)
    loss_sum=0
    num=0.1
    for x,y in dataloader:
        y_=model(x)
        loss=error(y_,y)
        loss_sum+=loss.item()
        num+=1
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(loss_sum/num)
# 模型保存
torch.save(model.state_dict(),'model.pth')
python 复制代码
# 模型预测
test_dataloader=DataLoader(test_dataset,batch_size=8,shuffle=False)
model.load_state_dict(torch.load('model.pth',weights_only=False))
corr=0
num=0
for x,y in test_dataloader:
    y_=model(x)
    out=torch.argmax(y_,dim=-1)
    corr+=(out==y).sum()
    num+=len(y)
    
print(corr/num)
    

优化方向

相关推荐
算AI2 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c3 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2053 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
IT猿手3 小时前
基于CNN-LSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
网络·cnn·lstm
8K超高清3 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh4 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员4 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物4 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技
云卓SKYDROID4 小时前
科技赋能消防:无人机“挂弹灭火“构筑森林防火墙!
人工智能·科技·无人机·科普·云卓科技
gaoshengdainzi4 小时前
镜片防雾性能测试仪在自动驾驶与无人机领域的创新应用
人工智能·自动驾驶·无人机·镜片防雾性能测试仪