ubuntu22安装AI环境

安装Ubuntu驱动

查看可安装Ubuntu驱动列表

bash 复制代码
sudo ubuntu-drivers devices

安装指定驱动

选择带有"recommended"标记的驱动程序即可,更高版本的是最新版,可能存在兼容问题。

bash 复制代码
apt-get install nvidia-driver-535

安装cuda

有几种方法可以做到这一点,但这里我们将按照CUDA工具包进行安装

https://developer.nvidia.com/cuda-downloads?target_os=Linux\&target_arch=x86_64\&Distribution=Ubuntu\&target_version=22.04\&target_type=deb_local

添加环境变量

bash 复制代码
export PATH=$PATH:/usr/local/cuda-12.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64

安装效果

bash 复制代码
$ nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.67                 Driver Version: 550.67         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060 ...    Off |   00000000:01:00.0  On |                  N/A |
| N/A   54C    P8             15W /   80W |     138MiB /   6144MiB |     33%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      2650      G   /usr/lib/xorg/Xorg                            133MiB |
+-----------------------------------------------------------------------------------------+
bash 复制代码
$nvcc -v
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

安装cuDNN

从下面的页面中选择要安装的版本和设备的组合文件。后面会解释,请注意,它在一定程度上受到tensorRT版本的约束。这次,8.9.7选择 。

https://developer.nvidia.com/rdp/cudnn-archive

下载必要的文件后,我运行了安装命令,如下所示。这只是一个示例,因此请按照屏幕上的说明进行操作。 (EA好像是Early access,GA是Stable版本,所以如果你有GA就选择GA)

安装deb文件

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update


sudo apt-get -y install cudnn-cuda-12

安装torch

https://pytorch.org/get-started/previous-versions/

相关推荐
m0_571186603 分钟前
第三十四周周报
人工智能
AI资源库3 分钟前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni4 分钟前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
kyle~4 分钟前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm
xrgs_shz4 分钟前
什么是LLM、VLM、MLLM、LMM?它们之间有什么关联?
人工智能·计算机视觉
DatGuy5 分钟前
Week 36: 量子深度学习入门:辛量子神经网络与物理守恒
人工智能·深度学习·神经网络
说私域8 分钟前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
千里马也想飞10 分钟前
汉语言文学《朝花夕拾》叙事艺术研究论文写作实操:AI 辅助快速完成框架 + 正文创作
人工智能
玉梅小洋11 分钟前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程
肾透侧视攻城狮11 分钟前
《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》
人工智能·深度学习·计算机视觉模快·支持的数据集类型·常用变换方法分类·图像分类流程实战·视觉模快高级功能