ubuntu22安装AI环境

安装Ubuntu驱动

查看可安装Ubuntu驱动列表

bash 复制代码
sudo ubuntu-drivers devices

安装指定驱动

选择带有"recommended"标记的驱动程序即可,更高版本的是最新版,可能存在兼容问题。

bash 复制代码
apt-get install nvidia-driver-535

安装cuda

有几种方法可以做到这一点,但这里我们将按照CUDA工具包进行安装

https://developer.nvidia.com/cuda-downloads?target_os=Linux\&target_arch=x86_64\&Distribution=Ubuntu\&target_version=22.04\&target_type=deb_local

添加环境变量

bash 复制代码
export PATH=$PATH:/usr/local/cuda-12.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64

安装效果

bash 复制代码
$ nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.67                 Driver Version: 550.67         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060 ...    Off |   00000000:01:00.0  On |                  N/A |
| N/A   54C    P8             15W /   80W |     138MiB /   6144MiB |     33%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      2650      G   /usr/lib/xorg/Xorg                            133MiB |
+-----------------------------------------------------------------------------------------+
bash 复制代码
$nvcc -v
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

安装cuDNN

从下面的页面中选择要安装的版本和设备的组合文件。后面会解释,请注意,它在一定程度上受到tensorRT版本的约束。这次,8.9.7选择 。

https://developer.nvidia.com/rdp/cudnn-archive

下载必要的文件后,我运行了安装命令,如下所示。这只是一个示例,因此请按照屏幕上的说明进行操作。 (EA好像是Early access,GA是Stable版本,所以如果你有GA就选择GA)

安装deb文件

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update


sudo apt-get -y install cudnn-cuda-12

安装torch

https://pytorch.org/get-started/previous-versions/

相关推荐
Dm_dotnet1 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算2 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心2 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar3 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai3 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI4 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear5 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp
小气小憩5 小时前
“暗战”百度搜索页:Monica悬浮球被“围剿”,一场AI Agent与传统巨头的流量攻防战
前端·人工智能
神经星星5 小时前
准确度提升400%!印度季风预测模型基于36个气象站点,实现城区尺度精细预报
人工智能
IT_陈寒8 小时前
JavaScript 性能优化:5 个被低估的 V8 引擎技巧让你的代码快 200%
前端·人工智能·后端