ubuntu22安装AI环境

安装Ubuntu驱动

查看可安装Ubuntu驱动列表

bash 复制代码
sudo ubuntu-drivers devices

安装指定驱动

选择带有"recommended"标记的驱动程序即可,更高版本的是最新版,可能存在兼容问题。

bash 复制代码
apt-get install nvidia-driver-535

安装cuda

有几种方法可以做到这一点,但这里我们将按照CUDA工具包进行安装

https://developer.nvidia.com/cuda-downloads?target_os=Linux\&target_arch=x86_64\&Distribution=Ubuntu\&target_version=22.04\&target_type=deb_local

添加环境变量

bash 复制代码
export PATH=$PATH:/usr/local/cuda-12.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64

安装效果

bash 复制代码
$ nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.67                 Driver Version: 550.67         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060 ...    Off |   00000000:01:00.0  On |                  N/A |
| N/A   54C    P8             15W /   80W |     138MiB /   6144MiB |     33%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      2650      G   /usr/lib/xorg/Xorg                            133MiB |
+-----------------------------------------------------------------------------------------+
bash 复制代码
$nvcc -v
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

安装cuDNN

从下面的页面中选择要安装的版本和设备的组合文件。后面会解释,请注意,它在一定程度上受到tensorRT版本的约束。这次,8.9.7选择 。

https://developer.nvidia.com/rdp/cudnn-archive

下载必要的文件后,我运行了安装命令,如下所示。这只是一个示例,因此请按照屏幕上的说明进行操作。 (EA好像是Early access,GA是Stable版本,所以如果你有GA就选择GA)

安装deb文件

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update


sudo apt-get -y install cudnn-cuda-12

安装torch

https://pytorch.org/get-started/previous-versions/

相关推荐
AL.千灯学长41 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
LCG元1 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong1 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨2 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡2 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河2 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14552 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*2 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥2 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__2 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程