开卷可扩展自动驾驶(OpenDriveLab)

一种通用的视觉点云预测预训练方法

开卷可扩展自动驾驶(OpenDriveLab)

自动驾驶新方向?ViDAR:开卷可扩展自动驾驶(OpenDriveLab)-CSDN博客

创新点

在这项工作中,本文探索了专为端到端视觉自动驾驶应用量身定制的预训练方法,不仅包括感知,还包括预测和规划。本文构建了一个新的 pretext tasks ------视觉点云预测(见图2),以充分利用原始图像-激光雷达序列背后的语义、三维几何和时间动态信息,并考虑到可扩展性(being scalable)。它从历史视觉图像中预测未来的点云。

视觉点云预测的主要理念在于对语义、三维结构和时间建模的同时监督。通过迫使模型从历史数据预测未来,它监督了场景流和物体运动的提取,这对于时间建模和未来估计至关重要。同时,它涉及从图像重建点云,这监督了多视角几何和语义建模。因此,来自视觉点云预测的特征嵌入了几何和时间提示(geometric and temporal hints)的信息,这对于同时进行感知、跟踪和规划都是有益的。

为此,本文提出了 ViDAR,一种用于预训练的通用视觉点云预测方法(a general visual point cloud forecasting approach)(见图2)。ViDAR 包括三个部分:历史编码器(History Encoder)、潜在渲染操作符(Latent Rendering operator)和未来解码器(Future Decoder)。历史编码器是预训练的目标结构。它可以是任何视觉BEV编码器,用于将视觉序列嵌入到BEV空间。这些BEV特征被送入潜在渲染操作符。潜在渲染在使 ViDAR 提升下游性能方面发挥着至关重要的作用。它解决了 射线形状BEV特征问题(ray-shaped BEV features issue),建模三维几何潜在空间,并连接编码器与解码器。未来解码器是一个自回归 transformer ,它利用历史BEV特征迭代地预测任意时间戳的未来点云。

相关推荐
牛客企业服务29 分钟前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
视觉语言导航1 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
**梯度已爆炸**1 小时前
自然语言处理入门
人工智能·自然语言处理
ctrlworks1 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂2 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊2 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道2 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~2 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子2 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya2 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作