开卷可扩展自动驾驶(OpenDriveLab)

一种通用的视觉点云预测预训练方法

开卷可扩展自动驾驶(OpenDriveLab)

自动驾驶新方向?ViDAR:开卷可扩展自动驾驶(OpenDriveLab)-CSDN博客

创新点

在这项工作中,本文探索了专为端到端视觉自动驾驶应用量身定制的预训练方法,不仅包括感知,还包括预测和规划。本文构建了一个新的 pretext tasks ------视觉点云预测(见图2),以充分利用原始图像-激光雷达序列背后的语义、三维几何和时间动态信息,并考虑到可扩展性(being scalable)。它从历史视觉图像中预测未来的点云。

视觉点云预测的主要理念在于对语义、三维结构和时间建模的同时监督。通过迫使模型从历史数据预测未来,它监督了场景流和物体运动的提取,这对于时间建模和未来估计至关重要。同时,它涉及从图像重建点云,这监督了多视角几何和语义建模。因此,来自视觉点云预测的特征嵌入了几何和时间提示(geometric and temporal hints)的信息,这对于同时进行感知、跟踪和规划都是有益的。

为此,本文提出了 ViDAR,一种用于预训练的通用视觉点云预测方法(a general visual point cloud forecasting approach)(见图2)。ViDAR 包括三个部分:历史编码器(History Encoder)、潜在渲染操作符(Latent Rendering operator)和未来解码器(Future Decoder)。历史编码器是预训练的目标结构。它可以是任何视觉BEV编码器,用于将视觉序列嵌入到BEV空间。这些BEV特征被送入潜在渲染操作符。潜在渲染在使 ViDAR 提升下游性能方面发挥着至关重要的作用。它解决了 射线形状BEV特征问题(ray-shaped BEV features issue),建模三维几何潜在空间,并连接编码器与解码器。未来解码器是一个自回归 transformer ,它利用历史BEV特征迭代地预测任意时间戳的未来点云。

相关推荐
线束线缆组件品替网3 分钟前
IO Audio Technologies 音频线缆抗干扰与带宽设计要点
网络·人工智能·汽车·电脑·音视频·材料工程
Hcoco_me18 分钟前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto28 分钟前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙28 分钟前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错36 分钟前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.39 分钟前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务
core5121 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数
阿湯哥1 小时前
Spring AI Alibaba 实现 Workflow 全指南
java·人工智能·spring
Tezign_space1 小时前
Agent Skills 详解:5大核心能力架构与AI Agent落地实践
人工智能·架构·生成式ai·ai agent·上下文工程·skills·agent skills
m0_466525291 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能