开卷可扩展自动驾驶(OpenDriveLab)

一种通用的视觉点云预测预训练方法

开卷可扩展自动驾驶(OpenDriveLab)

自动驾驶新方向?ViDAR:开卷可扩展自动驾驶(OpenDriveLab)-CSDN博客

创新点

在这项工作中,本文探索了专为端到端视觉自动驾驶应用量身定制的预训练方法,不仅包括感知,还包括预测和规划。本文构建了一个新的 pretext tasks ------视觉点云预测(见图2),以充分利用原始图像-激光雷达序列背后的语义、三维几何和时间动态信息,并考虑到可扩展性(being scalable)。它从历史视觉图像中预测未来的点云。

视觉点云预测的主要理念在于对语义、三维结构和时间建模的同时监督。通过迫使模型从历史数据预测未来,它监督了场景流和物体运动的提取,这对于时间建模和未来估计至关重要。同时,它涉及从图像重建点云,这监督了多视角几何和语义建模。因此,来自视觉点云预测的特征嵌入了几何和时间提示(geometric and temporal hints)的信息,这对于同时进行感知、跟踪和规划都是有益的。

为此,本文提出了 ViDAR,一种用于预训练的通用视觉点云预测方法(a general visual point cloud forecasting approach)(见图2)。ViDAR 包括三个部分:历史编码器(History Encoder)、潜在渲染操作符(Latent Rendering operator)和未来解码器(Future Decoder)。历史编码器是预训练的目标结构。它可以是任何视觉BEV编码器,用于将视觉序列嵌入到BEV空间。这些BEV特征被送入潜在渲染操作符。潜在渲染在使 ViDAR 提升下游性能方面发挥着至关重要的作用。它解决了 射线形状BEV特征问题(ray-shaped BEV features issue),建模三维几何潜在空间,并连接编码器与解码器。未来解码器是一个自回归 transformer ,它利用历史BEV特征迭代地预测任意时间戳的未来点云。

相关推荐
海洲探索-Hydrovo1 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机1 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬3 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495644 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
倔强青铜三5 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三5 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
地平线开发者5 小时前
手撕大模型 | MQA 和 GQA 原理解析
自动驾驶
地平线开发者5 小时前
征程 6 | BPU trace 简介与实操
算法·自动驾驶
强哥之神5 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
zskj_qcxjqr5 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人