无环SLAM系统集成后端回环检测模块(loop):SC-A-LOAM以及FAST_LIO_SLAM

最近在研究SLAM目标检测相关知识,看到一篇论文,集成了SC-A-LOAM作为后端回环检测模块,在学习了论文相关内容后决定看一下代码知识,随后将其移植,学习过程中发现我找的论文已经集成了回环检测模块,但是我的另一篇base并没有集成回环检测模块,不过后面调研发现这个回环检测模块可以方便的进行移植,下面简单总结一下这个后端回环模块的使用方式:

下面的FAST-LIO是在A-LOAM的基础上发展的后端回环模块集成到FAST算法上,首先参考SC-A-LOAM官网介绍:

根据官网介绍想要集成所提出的后端回环检测模块,只要要在已有的雷达里程计模块中输出一个里程计话题和一个扫描帧话题即可。
仅仅根据这个介绍相信还是不太容易上手,非常抽象,由于我选择的论文参考的FAST集成后的FAST-LIO-SLAM,所以我下面以FAST-LIO-SLAM为例说明如何集成SC-PGO回环检测模块

FAST-LIO-SLAM目录结构:

我们需要需要做两步,1.将FAST-LIO更改为自己的前端SLAM系统;2. 更改上图中SC-PGO模块中的里程计以及帧订阅话题。第一步需要结合自己选择的算法进行更改。第二部主要修改下述文件:

  • 修改lidar_type中的value为自己的雷达类型,如我的代码中的是:VLP16。这一步需要调研SC-PGO是否支持你的雷达类型。
  • 修改下面方框中的 /Odometry_after_opt 和 /loop_map为自己的里程计系统发布的里程计以及雷达帧话题,如果没有的话需要修改代码实现发布这两个话题。
  • **关于为什么FAST-LIO-SLAM集成的SC-PGO系统有三个话题映射:**上图最后一个方框下面一行的/cloud_for_scancontext的重映射,在FAST-LIO-SLAM代码中全局搜索/cloud_for_scancontext发现只有launch文件中这一处使用到的,其他地方没有,所以我考虑这个话题重映射是没有实际意义的,同时我选择的代码中也没有映射这个话题,可以考虑这个话题的影响。

按照上面步骤完成后就实现将回环检测模块集成到自己的SLAM系统中。

相关推荐
极客小云9 小时前
【基于 PyQt6 的红外与可见光图像配准工具开发实战】
c语言·python·yolo·目标检测
GatiArt雷11 小时前
基于YOLOv8的轻量化AI目标检测在嵌入式设备上的落地实现
人工智能·yolo·目标检测
deng120415 小时前
【yolov1:开启目标检测的全新纪元】
人工智能·yolo·目标检测
一颗小树x17 小时前
Qwen3-VL 目标检测 | 生成训练标签 | LabelMe格式 | COCO格式
目标检测·vlm·模型推理·vllm加速·标注数据
极智视界20 小时前
目标检测数据集 - 野生动物检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·野生动物检测
ASD123asfadxv20 小时前
【目标检测】YOLOv26:基于改进算法的乌鸦识别系统详解
算法·yolo·目标检测
KmjJgWeb21 小时前
柑橘木虱目标检测与识别——基于改进YOLOv26算法的高精度检测方法研究
算法·yolo·目标检测
qunaa010121 小时前
环状缺陷检测与识别_YOLOv26_目标检测改进方案
yolo·目标检测·目标跟踪
极智视界21 小时前
目标检测数据集 - 排球比赛场景排球检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·排球检测
TOYOAUTOMATON1 天前
节卡机器人 2026:核心动态与全景解析
大数据·人工智能·目标检测·机器人·自动化