无环SLAM系统集成后端回环检测模块(loop):SC-A-LOAM以及FAST_LIO_SLAM

最近在研究SLAM目标检测相关知识,看到一篇论文,集成了SC-A-LOAM作为后端回环检测模块,在学习了论文相关内容后决定看一下代码知识,随后将其移植,学习过程中发现我找的论文已经集成了回环检测模块,但是我的另一篇base并没有集成回环检测模块,不过后面调研发现这个回环检测模块可以方便的进行移植,下面简单总结一下这个后端回环模块的使用方式:

下面的FAST-LIO是在A-LOAM的基础上发展的后端回环模块集成到FAST算法上,首先参考SC-A-LOAM官网介绍:

根据官网介绍想要集成所提出的后端回环检测模块,只要要在已有的雷达里程计模块中输出一个里程计话题和一个扫描帧话题即可。
仅仅根据这个介绍相信还是不太容易上手,非常抽象,由于我选择的论文参考的FAST集成后的FAST-LIO-SLAM,所以我下面以FAST-LIO-SLAM为例说明如何集成SC-PGO回环检测模块

FAST-LIO-SLAM目录结构:

我们需要需要做两步,1.将FAST-LIO更改为自己的前端SLAM系统;2. 更改上图中SC-PGO模块中的里程计以及帧订阅话题。第一步需要结合自己选择的算法进行更改。第二部主要修改下述文件:

  • 修改lidar_type中的value为自己的雷达类型,如我的代码中的是:VLP16。这一步需要调研SC-PGO是否支持你的雷达类型。
  • 修改下面方框中的 /Odometry_after_opt 和 /loop_map为自己的里程计系统发布的里程计以及雷达帧话题,如果没有的话需要修改代码实现发布这两个话题。
  • **关于为什么FAST-LIO-SLAM集成的SC-PGO系统有三个话题映射:**上图最后一个方框下面一行的/cloud_for_scancontext的重映射,在FAST-LIO-SLAM代码中全局搜索/cloud_for_scancontext发现只有launch文件中这一处使用到的,其他地方没有,所以我考虑这个话题重映射是没有实际意义的,同时我选择的代码中也没有映射这个话题,可以考虑这个话题的影响。

按照上面步骤完成后就实现将回环检测模块集成到自己的SLAM系统中。

相关推荐
极客代码5 小时前
第五篇:后端优化——位姿图的灵魂--从图优化到滑动窗口的联合状态估计
python·深度学习·计算机视觉·视觉里程计·slam·回环检测·地图构建
wuk99818 小时前
MATLAB的CFAR(恒虚警率)图像目标检测
目标检测·matlab·目标跟踪
tirvideo1 天前
RK3588芯片与板卡全面解析:旗舰级AIoT与边缘计算的核心
人工智能·嵌入式硬件·深度学习·目标检测·机器学习·计算机视觉·边缘计算
nju_spy2 天前
计算机视觉 - 物体检测(二)单阶段:YOLO系列 + SSD
人工智能·yolo·目标检测·计算机视觉·ssd·r-cnn·端到端检测
码猩2 天前
YOLO通用无人机目标检测框架
人工智能·yolo·目标检测
berling003 天前
【论文阅读 | WACV 2025 | MCOR:通过跨模态信息互补和余弦相似性通道重采样模块增强的多光谱目标检测】
论文阅读·人工智能·目标检测
IT古董3 天前
【第五章:计算机视觉-项目实战之目标检测实战】2.目标检测实战:中国交通标志检测-(4)YOLOv8训练与测试
yolo·目标检测·计算机视觉
berling003 天前
【论文阅读 | TGRS 2025 | DHANet:用于多模态无人机目标检测的双流分层交互网络】
论文阅读·目标检测·无人机
一朵小红花HH4 天前
SimpleBEV:改进的激光雷达-摄像头融合架构用于三维目标检测
论文阅读·人工智能·深度学习·目标检测·机器学习·计算机视觉·3d
IT古董4 天前
【第五章:计算机视觉-项目实战之目标检测实战】1.目标检测算法理论-(6)一阶段目标检测算法YOLO系列思想详解:YOLOV1~YOLOV10
算法·目标检测·计算机视觉