无环SLAM系统集成后端回环检测模块(loop):SC-A-LOAM以及FAST_LIO_SLAM

最近在研究SLAM目标检测相关知识,看到一篇论文,集成了SC-A-LOAM作为后端回环检测模块,在学习了论文相关内容后决定看一下代码知识,随后将其移植,学习过程中发现我找的论文已经集成了回环检测模块,但是我的另一篇base并没有集成回环检测模块,不过后面调研发现这个回环检测模块可以方便的进行移植,下面简单总结一下这个后端回环模块的使用方式:

下面的FAST-LIO是在A-LOAM的基础上发展的后端回环模块集成到FAST算法上,首先参考SC-A-LOAM官网介绍:

根据官网介绍想要集成所提出的后端回环检测模块,只要要在已有的雷达里程计模块中输出一个里程计话题和一个扫描帧话题即可。
仅仅根据这个介绍相信还是不太容易上手,非常抽象,由于我选择的论文参考的FAST集成后的FAST-LIO-SLAM,所以我下面以FAST-LIO-SLAM为例说明如何集成SC-PGO回环检测模块

FAST-LIO-SLAM目录结构:

我们需要需要做两步,1.将FAST-LIO更改为自己的前端SLAM系统;2. 更改上图中SC-PGO模块中的里程计以及帧订阅话题。第一步需要结合自己选择的算法进行更改。第二部主要修改下述文件:

  • 修改lidar_type中的value为自己的雷达类型,如我的代码中的是:VLP16。这一步需要调研SC-PGO是否支持你的雷达类型。
  • 修改下面方框中的 /Odometry_after_opt 和 /loop_map为自己的里程计系统发布的里程计以及雷达帧话题,如果没有的话需要修改代码实现发布这两个话题。
  • **关于为什么FAST-LIO-SLAM集成的SC-PGO系统有三个话题映射:**上图最后一个方框下面一行的/cloud_for_scancontext的重映射,在FAST-LIO-SLAM代码中全局搜索/cloud_for_scancontext发现只有launch文件中这一处使用到的,其他地方没有,所以我考虑这个话题重映射是没有实际意义的,同时我选择的代码中也没有映射这个话题,可以考虑这个话题的影响。

按照上面步骤完成后就实现将回环检测模块集成到自己的SLAM系统中。

相关推荐
陈傻鱼2 小时前
ROS2测试仿真
机器人·ros·slam
天天代码码天天1 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
卧式纯绿2 天前
自动驾驶3D目标检测综述(八)
人工智能·目标检测·3d·目标跟踪·cnn·自动驾驶
Coovally AI模型快速验证3 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn
泰洋睿兔3 天前
OPI4A,目标检测,口罩检测,mnn,YoloX
人工智能·目标检测·香橙派·mnn·opi4a
云空3 天前
《探索烟雾目标检测开源项目:技术与应用的深度剖析》
人工智能·目标检测·开源
云空3 天前
《目标检测数据集下载地址》
人工智能·目标检测·计算机视觉·目标跟踪·开源
⁢Easonhe4 天前
《基于卷积神经网络的星图弱小目标检测》论文精读
人工智能·目标检测·cnn
pchmi4 天前
C# OpenCV机器视觉:极大值抑制
人工智能·opencv·目标检测·计算机视觉·c#·机器视觉·模板匹配
Lunar*5 天前
华为 Ascend 平台 YOLOv5 目标检测推理教程
yolo·目标检测·华为