图像特征提取-SIFT

文章目录

图像特征提取中的SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)是一种强大的局部特征提取算法,广泛应用于计算机视觉和图像处理领域。以下是对SIFT特征提取的详细解释:

一、定义与原理

SIFT算法通过检测图像中的局部特征点,并计算这些特征点的描述符,从而实现图像的匹配和识别。这些特征点具有尺度不变性和旋转不变性,即使图像发生尺度缩放、旋转或光照变化,也能够被准确识别和匹配。

二、主要步骤

SIFT特征提取主要包括以下四个步骤:

  • 尺度空间极值检测:

    • 首先,将图像转换为不同尺度的金字塔,每个尺度上的图像都经过高斯模糊处理。
    • 然后,在每个尺度上应用高斯差分算子(Difference of Gaussian,DoG)来检测潜在的极值点,这些极值点即为候选的关键点。
  • 关键点定位:

    • 对每个候选关键点进行精确定位,通过拟合精细的模型来确定其精确位置和尺度.
  • 排除掉低对比度和边缘响应过强的点,以提高关键点的稳定性和可靠性。

  • 方向分配:

    • 基于图像局部的梯度方向,为每个关键点分配一个或多个方向。
    • 使用直方图统计关键点邻域内像素的梯度方向和幅值,确定关键点的主方向和一个或多个辅方向。
  • 关键点描述:

    • 在关键点周围的邻域内,测量图像局部的梯度,并计算梯度方向和幅值。
    • 将邻域划分为若干个子区域(如4x4),在每个子区域内计算梯度直方图,并将所有子区域的直方图连接起来形成一个高维向量(如128维),作为关键点的描述符。

三、特点与优势

  • 尺度不变性:通过在不同尺度的图像上检测关键点,SIFT特征能够应对图像的尺度缩放变化。
  • 旋转不变性:为每个关键点分配方向信息,使得SIFT特征具有旋转不变性。
  • 光照和视角变化鲁棒性:由于SIFT特征是基于图像的局部梯度信息计算的,因此对光照和视角变化具有一定的鲁棒性。
  • 独特性:每个关键点的描述符都是唯一的,能够有效地区分不同的图像特征。

四、代码运用

python 复制代码
import cv2  
import numpy as np  
  
# 读取图像  
jijia = cv2.imread('3.png')  
  
# 创建SIFT对象  
sift = cv2.SIFT_create()  
  
# 检测关键点  
kp = sift.detect(jijia)  
  
# 打印关键点的坐标  
for x in kp:  
    print(x.pt)  
  
# 绘制关键点(不需要特殊标志)  
jijia_sift = cv2.drawKeypoints(jijia, kp, None, flags=0)  # 或者直接写 cv2.drawKeypoints(jijia, kp, None)  
  
# 显示图像  
cv2.imshow('jijia_sift', jijia_sift)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  # 不要忘记关闭所有窗口  
  
# 计算描述符  
kp, des = sift.compute(jijia, kp)  
  
# 打印关键点和描述符的形状  
print(np.array(kp).shape, des.shape)
  • 读取图像:读取目标图像

  • 创建SIFT对象 :使用cv2.SIFT_create()函数创建一个SIFT(尺度不变特征变换)对象。SIFT是一种用于图像特征检测的算法,能够检测出图像中的关键点,并基于这些关键点计算描述符,这些描述符对于图像的尺度缩放、旋转甚至光照变化都具有一定的不变性。

  • 检测绘制关键点并打印坐标:使用SIFT对象的detect()方法在图像jijia上检测关键点。检测到的关键点存储在列表kp中,每个关键点都是一个KeyPoint对象,包含关键点的位置(pt属性,一个包含(x, y)坐标的元组)、大小(size属性)、方向(angle属性)等信息。遍历关键点列表kp,并打印每个关键点的坐标。使用cv2.drawKeypoints()函数在原始图像jijia上绘制检测到的关键点。

  • 图像显示:将最后的结果图像显示。

  • 计算并打印描述符:使用SIFT对象的compute()方法根据之前检测到的关键点kp和原始图像jijia计算描述符。打印描述符des的形状。

五、应用领域

SIFT特征提取算法在图像匹配、物体识别、三维重建、机器人导航、增强现实等领域有着广泛的应用。例如,在图像匹配中,可以利用SIFT特征提取算法提取两幅图像的关键点并进行匹配,从而实现图像的拼接或目标定位;在物体识别中,可以利用SIFT特征建立物体的特征库,并与待识别图像中的特征进行比对,从而实现物体的快速识别。

综上所述,SIFT特征提取算法是一种高效、稳定的图像特征提取方法,在计算机视觉和图像处理领域具有重要的应用价值。

相关推荐
红衣小蛇妖12 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer29 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
老胖闲聊2 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao3 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理