大模型输入参数学习

在大语言模型(如Transformer-based模型)中,生成文本时通常会用到一些控制生成过程的参数。这些参数可以帮助调整生成文本的质量、多样性和可控性。以下是对几个参数的详细解释:

具体使用需要根据具体情况自行酌定

1. top_p (Nucleus Sampling)

  • 含义top_p 是一种采样策略,称为"核采样"(Nucleus Sampling) 或"Top-p 采样"。它选择累积概率分布中前 p% 的词作为候选词,然后从这些候选词中随机选择下一个词。
  • 作用 :通过设置 top_p,可以控制生成文本的多样性。较小的 top_p 值会导致更保守的选择,生成的文本可能更连贯但缺乏多样性;较大的 top_p 值会导致更多的随机性和多样性,但可能会引入不相关的词。
  • 取值范围 :0 < top_p ≤ 1。通常情况下,top_p 设置为 0.9 或 0.95 是比较常见的选择。

2. top_k (Top-k Sampling)

  • 含义top_k 是另一种采样策略,称为"Top-k 采样"。它选择概率最高的前 k 个词作为候选词,然后从这些候选词中随机选择下一个词。
  • 作用 :通过设置 top_k,可以控制生成文本的多样性。较小的 top_k 值会导致更保守的选择,生成的文本可能更连贯但缺乏多样性;较大的 top_k 值会导致更多的随机性和多样性,但可能会引入不相关的词。
  • 取值范围top_k 是一个正整数。通常情况下,top_k 设置为 50 或 100 是比较常见的选择。

3. temperature

  • 含义temperature 是一个控制生成文本随机性的参数。它用于调整输出概率分布的平滑度。
  • 作用 :较高的 temperature 值会使概率分布更加平坦,增加生成文本的随机性和多样性;较低的 temperature 值会使概率分布更加尖锐,减少生成文本的随机性,使生成的文本更加确定和连贯。
  • 取值范围temperature > 0。通常情况下,temperature 设置为 0.7 或 1.0 是比较常见的选择。

4. max_new_tokens

  • 含义max_new_tokens 是一个控制生成文本长度的参数。它指定了生成的新 tokens 的最大数量。
  • 作用 :通过设置 max_new_tokens,可以控制生成文本的长度。较大的值会导致生成更长的文本,而较小的值会导致生成较短的文本。
  • 取值范围max_new_tokens 是一个非负整数。具体取值取决于你的需求,例如生成一个段落可能需要 50 到 100 个 tokens,生成一篇文章可能需要几百个 tokens。

总结

  • top_ptop_k:用于控制生成文本的多样性和连贯性。较小的值会使生成的文本更连贯但缺乏多样性,较大的值会使生成的文本更随机和多样。
  • temperature:用于控制生成文本的随机性。较高的值增加随机性,较低的值增加确定性。
  • max_new_tokens:用于控制生成文本的长度。
相关推荐
Rock_yzh5 分钟前
AI学习日记——PyTorch深度学习快速入门:神经网络构建与训练实战
人工智能·pytorch·python·深度学习·神经网络·学习
hello kitty w9 分钟前
Python学习(10) ----- Python的继承
开发语言·python·学习
razelan37 分钟前
第一例:石头剪刀布的机器学习(xedu,示例15)
人工智能·机器学习
CandyU239 分钟前
C++ 学习 —— 02 - 排序算法
c++·学习·排序算法
~无忧花开~42 分钟前
CSS学习笔记(二):CSS动画核心属性全解析
开发语言·前端·css·笔记·学习·css3·动画
一条星星鱼1 小时前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
TMT星球1 小时前
TCL华星t8项目正式开工,总投资额约295亿元
大数据·人工智能
猫头虎1 小时前
DeepSeek刚刚开源了一个3B的 OCR模型:什么是DeepSeek-OCR?单张A100-40G每天可以处理20万+页文档
人工智能·开源·whisper·prompt·aigc·ocr·gpu算力
lky不吃香菜1 小时前
上下文工程的艺术与科学:来自 LangChain 和 Manus 的前沿洞察
人工智能
香菜烤面包1 小时前
Attention:MHA->MQA->GQA->MLA
人工智能·深度学习