利用 mnist 数据集测试对比 kan 和 cnn/mlp 的效果

你好呀,我是董董灿。

kan 模型其实火了很久了,很多人从理论的角度给出了非常专业的解读,基本结论是:从目前来看,kan 很难替代 mlp 成为一个更加经典的模型结构。

我这里就不做理论解读了,这部分在网上一搜一大堆。

我这里就直接给出一个利用 KAN / CNN / MLP 分别对 Mnist 数据集进行验证的结果,我们直接从实验的结果出发,来看看这个 KAN 模型的效果如何?

为了做实验,我分别编写了 test_with_cnn_mnist.py 、test_with_kan_mnist.py 以及 test_with_mlp_mnist.py 三个代码脚本,使用相同的数据集,都是 mnist 进行训练和测试。

CNN 的效果

使用 CNN ,经过 5 个 epoch 的训练,最终 CNN 在测试集上的预测准确率是 98.36 %.

MLP 的效果

使用同样的数据集,利用 MLP 进行训练和推理,最终的预测准确度在 93.3 % 左右。

最后看一下 KAN 的效果

使用 KAN 模型对数据集进行训练,最终得到的准确度仅为 82.04%

对比一下

相同的数据集,都是 MNIST。

CNN 预测准确度: 98%

MLP 预测准确度:93%

KAN 预测准确度:82%

说明 KAN 模型在 MNIST 这种经典任务中的表现还有待提高。

最后,以上仅为本人自己测试,可能不严谨,毕竟是在学习 KAN 的过程中做的一个测试,但也能从一定程度上说明问题。

以上三个测试的实验源码有些长,不再这里贴了,如果你对此感兴趣,可以关注我的公众号:董董灿是个攻城狮 并后台回复**"kan**"或 "KAN" 获取以上三种模型的测试源码,当然也可以加我微信(ddcsggcs)获取以上源码。

代码编写测试不易,点个赞呗~

相关推荐
艾莉丝努力练剑14 小时前
【C++STL :stack && queue (一) 】STL:stack与queue全解析|深入使用(附高频算法题详解)
linux·开发语言·数据结构·c++·算法
CoovallyAIHub15 小时前
ICLR 2026 惊现 SAM 3,匿名提交,实现“概念分割”,CV领域再迎颠覆性突破?
深度学习·算法·计算机视觉
IT古董15 小时前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(2)BiseNet系列算法详解
算法·计算机视觉·制造
电鱼智能的电小鱼15 小时前
服装制造企业痛点解决方案:EFISH-SBC-RK3588 预测性维护方案
网络·人工智能·嵌入式硬件·算法·制造
yan86265924615 小时前
于 C++ 的虚函数多态 和 模板方法模式 的结合
java·开发语言·算法
小此方15 小时前
C语言自定义变量类型结构体理论:从初见到精通(下)
c语言·数据结构·算法
_poplar_16 小时前
15 【C++11 新特性】统一的列表初始化和变量类型推导
开发语言·数据结构·c++·git·算法
CoovallyAIHub16 小时前
YOLO Vision 2025 还没结束!亚洲首场登陆深圳,YOLO26有望亮相
深度学习·算法·计算机视觉
寂静山林16 小时前
UVa 10447 Sum-up the Primes (II)
算法
zy_destiny17 小时前
【工业场景】用YOLOv8实现行人识别
人工智能·深度学习·opencv·算法·yolo·机器学习