利用 mnist 数据集测试对比 kan 和 cnn/mlp 的效果

你好呀,我是董董灿。

kan 模型其实火了很久了,很多人从理论的角度给出了非常专业的解读,基本结论是:从目前来看,kan 很难替代 mlp 成为一个更加经典的模型结构。

我这里就不做理论解读了,这部分在网上一搜一大堆。

我这里就直接给出一个利用 KAN / CNN / MLP 分别对 Mnist 数据集进行验证的结果,我们直接从实验的结果出发,来看看这个 KAN 模型的效果如何?

为了做实验,我分别编写了 test_with_cnn_mnist.py 、test_with_kan_mnist.py 以及 test_with_mlp_mnist.py 三个代码脚本,使用相同的数据集,都是 mnist 进行训练和测试。

CNN 的效果

使用 CNN ,经过 5 个 epoch 的训练,最终 CNN 在测试集上的预测准确率是 98.36 %.

MLP 的效果

使用同样的数据集,利用 MLP 进行训练和推理,最终的预测准确度在 93.3 % 左右。

最后看一下 KAN 的效果

使用 KAN 模型对数据集进行训练,最终得到的准确度仅为 82.04%

对比一下

相同的数据集,都是 MNIST。

CNN 预测准确度: 98%

MLP 预测准确度:93%

KAN 预测准确度:82%

说明 KAN 模型在 MNIST 这种经典任务中的表现还有待提高。

最后,以上仅为本人自己测试,可能不严谨,毕竟是在学习 KAN 的过程中做的一个测试,但也能从一定程度上说明问题。

以上三个测试的实验源码有些长,不再这里贴了,如果你对此感兴趣,可以关注我的公众号:董董灿是个攻城狮 并后台回复**"kan**"或 "KAN" 获取以上三种模型的测试源码,当然也可以加我微信(ddcsggcs)获取以上源码。

代码编写测试不易,点个赞呗~

相关推荐
黑屋里的马1 小时前
java的设计模式之桥接模式(Bridge)
java·算法·桥接模式
sin_hielo2 小时前
leetcode 1611
算法·leetcode
李小白杂货铺2 小时前
识别和破除信息茧房
算法·信息茧房·识别信息茧房·破除信息茧房·算法推荐型茧房·观点过滤型茧房·茧房
来荔枝一大筐3 小时前
C++ LeetCode 力扣刷题 541. 反转字符串 II
c++·算法·leetcode
暴风鱼划水3 小时前
算法题(Python)数组篇 | 6.区间和
python·算法·数组·区间和
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之轴角在Opencv-PNP中的应用(一)
前端·人工智能·算法·计算机视觉·slam se2 非线性优化
是苏浙4 小时前
零基础入门C语言之C语言实现数据结构之顺序表应用
c语言·数据结构·算法
lkbhua莱克瓦244 小时前
Java基础——常用算法3
java·数据结构·笔记·算法·github·排序算法·学习方法
小白程序员成长日记4 小时前
2025.11.07 力扣每日一题
数据结构·算法·leetcode
·白小白4 小时前
力扣(LeetCode) ——209. 长度最小的子数组(C++)
c++·算法·leetcode