利用 mnist 数据集测试对比 kan 和 cnn/mlp 的效果

你好呀,我是董董灿。

kan 模型其实火了很久了,很多人从理论的角度给出了非常专业的解读,基本结论是:从目前来看,kan 很难替代 mlp 成为一个更加经典的模型结构。

我这里就不做理论解读了,这部分在网上一搜一大堆。

我这里就直接给出一个利用 KAN / CNN / MLP 分别对 Mnist 数据集进行验证的结果,我们直接从实验的结果出发,来看看这个 KAN 模型的效果如何?

为了做实验,我分别编写了 test_with_cnn_mnist.py 、test_with_kan_mnist.py 以及 test_with_mlp_mnist.py 三个代码脚本,使用相同的数据集,都是 mnist 进行训练和测试。

CNN 的效果

使用 CNN ,经过 5 个 epoch 的训练,最终 CNN 在测试集上的预测准确率是 98.36 %.

MLP 的效果

使用同样的数据集,利用 MLP 进行训练和推理,最终的预测准确度在 93.3 % 左右。

最后看一下 KAN 的效果

使用 KAN 模型对数据集进行训练,最终得到的准确度仅为 82.04%

对比一下

相同的数据集,都是 MNIST。

CNN 预测准确度: 98%

MLP 预测准确度:93%

KAN 预测准确度:82%

说明 KAN 模型在 MNIST 这种经典任务中的表现还有待提高。

最后,以上仅为本人自己测试,可能不严谨,毕竟是在学习 KAN 的过程中做的一个测试,但也能从一定程度上说明问题。

以上三个测试的实验源码有些长,不再这里贴了,如果你对此感兴趣,可以关注我的公众号:董董灿是个攻城狮 并后台回复**"kan**"或 "KAN" 获取以上三种模型的测试源码,当然也可以加我微信(ddcsggcs)获取以上源码。

代码编写测试不易,点个赞呗~

相关推荐
不如自挂东南吱12 分钟前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
洛生&33 分钟前
Elevator Rides
算法
2501_9335130442 分钟前
关于一种计数的讨论、ARC212C Solution
算法
Wu_Dylan43 分钟前
智能体系列(二):规划(Planning):从 CoT、ToT 到动态采样与搜索
人工智能·算法
散峰而望1 小时前
【算法竞赛】栈和 stack
开发语言·数据结构·c++·算法·leetcode·github·推荐算法
知乎的哥廷根数学学派1 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
蚊子码农1 小时前
算法题解记录-208实现Trie前缀树
运维·服务器·算法
2301_800256111 小时前
【人工智能引论期末复习】第3章 搜索求解2 - 对抗搜索
人工智能·算法·深度优先
程序猿阿伟1 小时前
《量子算法开发实战手册:Python全栈能力的落地指南》
python·算法·量子计算
老鼠只爱大米2 小时前
LeetCode算法题详解 438:找到字符串中所有字母异位词
算法·leetcode·双指针·字符串匹配·字母异位词·滑动窗口算法