图像处理案例05

车辆统计

  • [1 OpenCV车辆统计](#1 OpenCV车辆统计)
    • [1.1 OpenCV车辆统计步骤](#1.1 OpenCV车辆统计步骤)
    • [1.2 代码](#1.2 代码)
  • [2 YOLOV5车流量统计](#2 YOLOV5车流量统计)
    • [2.1 YOLOV5车流量统计步骤](#2.1 YOLOV5车流量统计步骤)
    • [2.2 代码](#2.2 代码)

1 OpenCV车辆统计

1.1 OpenCV车辆统计步骤

  1. 用GMM获取前景掩码
  2. 形态学操作除去噪声
  3. 获取图像上的轮廓,根据轮廓特征筛选出车辆。
  4. 在图片上设置线计数线,对在线临界区域的车辆
    参考项目地址:https://gitcode.com/gh_mirrors/opencv31/opencv

1.2 代码

python 复制代码
# 去背景
# 加载视频
import cv2
import numpy as np

cap = cv2.VideoCapture('tracker.mp4')
bgsubmog = cv2.bgsegm.createBackgroundSubtractorMOG()

# 形态学kernel,用于过滤噪声
kernel= cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
## 轮廓最小外界矩形的宽高筛选是否是车辆
min_w = 90
min_h = 90
## 存储图片上的车辆
cars = []
# 检测线的高度, 超参数
line_high = 620
## 线的偏移量,即在line_high(+-)区域内的车辆被计数
offset = 7
## 存储车辆数
carno = 0

def center(x, y, w, h):
    '''
    根据车辆外接矩形的左上角坐标(x, y)和宽高(w, h)得出举行的对角线交点(cx, cy),根据(cx, cy)与line_high的关系计数。
    '''
    x1 = int(w/2)
    y1 = int(h/2)
    cx = int(x) + x1
    cy = int(y) + y1
    return cx, cy

while True:
    ret, frame = cap.read()
    
    if ret == True:
        ## 彩色图转灰度图
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ## 高斯滤波去噪
        blur = cv2.GaussianBlur(gray, (3, 3), 5)
        # 1. 获取前景掩码
        mask = bgsubmog.apply(blur)
        # 2.通过腐蚀操作去掉轮廓小的噪声
        erode = cv2.erode(mask, kernel)
        ## 通过膨胀操作再把保留轮廓还原回来
        dilate = cv2.dilate(erode, kernel, iterations=2)
        
        ## 闭操作, 去掉轮廓内部的噪声
        close = cv2.morphologyEx(dilate, cv2.MORPH_CLOSE, kernel, iterations=2)
        
        ## 3.查找轮廓,筛选车辆
        result, contours, h = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        ## 画出检测线
        cv2.line(frame, (10, line_high), (1200, line_high), (255, 255, 0), 3)
        ## 画出轮廓
        for (i, c) in enumerate(contours):
            (x, y, w, h) = cv2.boundingRect(c)
            cv2.rectangle(frame, (int(x), int(y)), (int(x + w), int(y + h)), (0, 0, 255), 2)
            
            ## 通过外接矩形的宽高大小来过滤掉小轮廓.保留的轮廓都是车
            is_valid = (w >= min_w) and (h >= min_h)
            if not is_valid:
                continue
         
            ## 获取车轮廓的矩形框
            cv2.rectangle(frame, (int(x), int(y)), (int(x + w), int(y + h)), (0, 0, 255), 2)
            ## 获取车的中心点.
            cpoint = center(x, y, w, h)
            cars.append(cpoint)
            # 画出中心点
            cv2.circle(frame, (cpoint), 5, (0, 0, 255), -1)
            # 4.判断汽车是否过线. 
            for (x, y) in cars:
                if y > (line_high - offset) and y < (line_high + offset):
                    # 计数加1
                    carno += 1
                    cars.remove((x, y))
                    print(carno)
        ## 打印计数信息
        cv2.putText(frame, 'Vehicle Count:' + str(carno), (500, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 5)
        cv2.imshow('frame', frame)
        
    key = cv2.waitKey(10)
    if key == 'q':
        break
cap.release()
cv2.destroyAllWindows()

2 YOLOV5车流量统计

2.1 YOLOV5车流量统计步骤

2.2 代码

python 复制代码
相关推荐
熊猫钓鱼>_>3 分钟前
移动端开发技术选型报告:三足鼎立时代的开发者指南(2026年2月)
android·人工智能·ios·app·鸿蒙·cpu·移动端
想你依然心痛7 分钟前
ModelEngine·AI 应用开发实战:从智能体到可视化编排的全栈实践
人工智能·智能体·ai应用·modelengine
KIKIiiiiiiii8 分钟前
微信个人号API二次开发中的解决经验
java·人工智能·python·微信
哈哈你是真的厉害10 分钟前
解构 AIGC 的“核动力”引擎:华为 CANN 如何撑起万亿参数的大模型时代
人工智能·aigc·cann
Ekehlaft12 分钟前
这款国产 AI,让 Python 小白也能玩转编程
开发语言·人工智能·python·ai·aipy
哈__13 分钟前
CANN多模型并发部署方案
人工智能·pytorch
予枫的编程笔记15 分钟前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim
慢半拍iii16 分钟前
对比分析:ops-nn与传统深度学习框架算子的差异
人工智能·深度学习·ai·cann
心疼你的一切17 分钟前
解构CANN仓库:AIGC API从底层逻辑到实战落地,解锁国产化AI生成算力
数据仓库·人工智能·深度学习·aigc·cann
啊阿狸不会拉杆26 分钟前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法