1.什么是Redis向量数据库?
Redis 是一个开源(BSD 许可)的内存数据结构存储,用作数据库、缓存、消息代理和流式处理引擎。Redis 提供数据结构,例如字符串、哈希、列表、集合、带范围查询的有序集合、位图、超对数日志、地理空间索引和流。
Redis 搜索和查询 扩展了 Redis OSS 的核心功能,并允许您将 Redis 用作向量数据库
- 在哈希或 JSON 文档中存储向量和关联的元数据
- 检索向量
- 执行向量搜索
2.向量检索(Vector Search)的核心原理
向量检索(Vector Search)的核心原理是通过将文本或数据表示为高维向量,并在查询时根据向量的相似度进行搜索。在你的代码中,向量检索过程涉及以下几步:
匹配的原理:
- 检索的核心是将文本或数据转换成向量,在高维向量空间中查找与查询最相似的向量。
- 在存储数据时将指定的字段通过嵌入模型生成了向量。
- 在检索时,查询文本被向量化,然后与 Redis 中存储的向量进行相似度比较,找到相似度最高的向量(即相关的文档)。
关键点:
- 嵌入模型 将文本转换成向量。
- 相似度计算 通过余弦相似度或欧几里得距离来度量相似性。
- Top K 返回相似度最高的 K 个文档。
具体过程
1. 向量化数据:
当你将 JSON 中的字段存入 Redis 时,向量化工具(例如 vectorStore
)会将指定的字段转换为高维向量。每个字段的内容会通过某种嵌入模型(如 Word2Vec、BERT、OpenAI Embeddings 等)转换成向量表示。每个向量表示的是该字段内容的语义特征。
2. 搜索时的向量生成:
当执行 SearchRequest.query(message)
时,系统会将输入的 message
转换为一个查询向量。这一步是通过同样的嵌入模型,将查询文本转换为与存储在 Redis 中相同维度的向量。
3. 相似度匹配:
vectorStore.similaritySearch(request)
函数使用了一个向量相似度计算方法来查找最相似的向量。这通常是通过 余弦相似度 或 欧几里得距离 来度量查询向量和存储向量之间的距离。然后返回与查询最相似的前 K
个文档,即 withTopK(topK)
所指定的 K
个最相关的结果。
4. 返回匹配的文档:
匹配的结果是根据相似度得分排序的 List<Document>
。这些文档是你最初存储在 Redis 中的记录,包含了 JSON 中指定的字段。
3.环境搭建
version: '3'
services:
redis-stack:
image: redis/redis-stack
ports:
- 6379:6379
redis-insight:
image: redislabs/redisinsight:latest
ports:
- 5540:5540
Run following command:
docker-compose up -d
4.代码工程
实验目标
实现文件数据向量化到redis,并进行相似性搜索
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.2.1</version>
<relativePath /> <!-- lookup parent from repository -->
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>RedisVectorStore</artifactId>
<properties>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<spring-ai.version>0.8.1</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-autoconfigure</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-redis-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>5.1.0</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</pluginRepository>
</pluginRepositories>
</project>
controller
package com.et.controller;
import com.et.service.SearchService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import com.et.service.SearchService;
import java.util.HashMap;
import java.util.Map;
@RestController
public class HelloWorldController {
@Autowired
SearchService searchService;
@RequestMapping("/hello")
public Map<String, Object> showHelloWorld(){
Map<String, Object> map = new HashMap<>();
map.put("msg", searchService.retrieve("beer"));
return map;
}
}
configuration
加载文件数据到并将数据向量化到redis
JsonReader loader = new JsonReader(file, KEYS);
JsonReader
和 VectorStore
实现是将 KEYS
中指定的多个字段拼接在一起,生成一个统一的文本表示,然后通过嵌入模型将这些字段的组合文本转换为一个单一的向量,那么这里就是将多个字段组合成 一个综合向量。并将其处理后存入 Redis。
package com.et.config;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
import org.springframework.ai.reader.JsonReader;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.ApplicationArguments;
import org.springframework.boot.ApplicationRunner;
import org.springframework.core.io.InputStreamResource;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Component;
import java.util.Map;
import java.util.zip.GZIPInputStream;
@Component
public class DataLoader implements ApplicationRunner {
private static final Logger logger = LoggerFactory.getLogger(DataLoader.class);
private static final String[] KEYS = { "name", "abv", "ibu", "description" };
@Value("classpath:/data/beers.json.gz")
private Resource data;
private final RedisVectorStore vectorStore;
private final RedisVectorStoreProperties properties;
public DataLoader(RedisVectorStore vectorStore, RedisVectorStoreProperties properties) {
this.vectorStore = vectorStore;
this.properties = properties;
}
@Override
public void run(ApplicationArguments args) throws Exception {
Map<String, Object> indexInfo = vectorStore.getJedis().ftInfo(properties.getIndex());
Long sss= (Long) indexInfo.getOrDefault("num_docs", "0");
int numDocs=sss.intValue();
if (numDocs > 20000) {
logger.info("Embeddings already loaded. Skipping");
return;
}
Resource file = data;
if (data.getFilename().endsWith(".gz")) {
GZIPInputStream inputStream = new GZIPInputStream(data.getInputStream());
file = new InputStreamResource(inputStream, "beers.json.gz");
}
logger.info("Creating Embeddings...");
// tag::loader[]
// Create a JSON reader with fields relevant to our use case
JsonReader loader = new JsonReader(file, KEYS);
// Use the autowired VectorStore to insert the documents into Redis
vectorStore.add(loader.get());
// end::loader[]
logger.info("Embeddings created.");
}
}
配置redis vectorStore
package com.et.config;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
import org.springframework.ai.chat.ChatClient;
import org.springframework.ai.document.MetadataMode;
import org.springframework.ai.transformers.TransformersEmbeddingClient;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.ai.vectorstore.RedisVectorStore.RedisVectorStoreConfig;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class RedisConfiguration {
@Bean
TransformersEmbeddingClient transformersEmbeddingClient() {
return new TransformersEmbeddingClient(MetadataMode.EMBED);
}
@Bean
VectorStore vectorStore(TransformersEmbeddingClient embeddingClient, RedisVectorStoreProperties properties) {
var config = RedisVectorStoreConfig.builder().withURI(properties.getUri()).withIndexName(properties.getIndex())
.withPrefix(properties.getPrefix()).build();
RedisVectorStore vectorStore = new RedisVectorStore(config, embeddingClient);
vectorStore.afterPropertiesSet();
return vectorStore;
}
}
service
查询时,查询文本也会生成一个整体向量,与存储的综合向量进行匹配。
package com.et.service;
import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.SearchRequest;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class SearchService {
@Value("${topk:10}")
private int topK;
@Autowired
private VectorStore vectorStore;
public List<Document> retrieve(String message) {
SearchRequest request = SearchRequest.query(message).withTopK(topK);
// Query Redis for the top K documents most relevant to the input message
List<Document> docs = vectorStore.similaritySearch(request);
return docs;
}
}
只是一些关键代码,所有代码请参见下面代码仓库
代码仓库
- GitHub - Harries/springboot-demo: a simple springboot demo with some components for example: redis,solr,rockmq and so on.(RedisVectorStore)
5.测试
启动Spring Boot应用程序,查看日志
. ____ _ __ _ _
/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
\\/ ___)| |_)| | | | | || (_| | ) ) ) )
' |____| .__|_| |_|_| |_\__, | / / / /
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v3.2.1)
2024-09-24T14:03:48.217+08:00 INFO 23996 --- [ main] com.et.DemoApplication : Starting DemoApplication using Java 17.0.9 with PID 23996 (D:\IdeaProjects\ETFramework\RedisVectorStore\target\classes started by Dell in D:\IdeaProjects\ETFramework)
2024-09-24T14:03:48.221+08:00 INFO 23996 --- [ main] com.et.DemoApplication : No active profile set, falling back to 1 default profile: "default"
2024-09-24T14:03:49.186+08:00 INFO 23996 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port 8088 (http)
2024-09-24T14:03:49.199+08:00 INFO 23996 --- [ main] o.apache.catalina.core.StandardService : Starting service [Tomcat]
2024-09-24T14:03:49.199+08:00 INFO 23996 --- [ main] o.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache Tomcat/10.1.17]
2024-09-24T14:03:49.289+08:00 INFO 23996 --- [ main] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext
2024-09-24T14:03:49.290+08:00 INFO 23996 --- [ main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization completed in 1033 ms
2024-09-24T14:03:49.406+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
2024-09-24T14:03:49.407+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
2024-09-24T14:03:49.408+08:00 INFO 23996 --- [ main] ai.djl.util.Platform : Found matching platform from: jar:file:/D:/jar_repository/ai/djl/huggingface/tokenizers/0.26.0/tokenizers-0.26.0.jar!/native/lib/tokenizers.properties
2024-09-24T14:03:49.867+08:00 INFO 23996 --- [ main] o.s.a.t.TransformersEmbeddingClient : Model input names: input_ids, attention_mask, token_type_ids
2024-09-24T14:03:49.867+08:00 INFO 23996 --- [ main] o.s.a.t.TransformersEmbeddingClient : Model output names: last_hidden_state
2024-09-24T14:03:50.346+08:00 INFO 23996 --- [ main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8088 (http) with context path ''
2024-09-24T14:03:50.354+08:00 INFO 23996 --- [ main] com.et.DemoApplication : Started DemoApplication in 2.522 seconds (process running for 2.933)
2024-09-24T14:03:50.364+08:00 INFO 23996 --- [ main] com.et.config.DataLoader : Creating Embeddings...
2024-09-24T14:03:51.493+08:00 WARN 23996 --- [ main] ai.djl.util.cuda.CudaUtils : Failed to detect GPU count: CUDA driver version is insufficient for CUDA runtime version (35)
2024-09-24T14:03:51.800+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : PyTorch graph executor optimizer is enabled, this may impact your inference latency and throughput. See: https://docs.djl.ai/docs/development/inference_performance_optimization.html#graph-executor-optimization
2024-09-24T14:03:51.802+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : Number of inter-op threads is 6
2024-09-24T14:03:51.802+08:00 INFO 23996 --- [ main] ai.djl.pytorch.engine.PtEngine : Number of intra-op threads is 6
2024-09-24T14:04:26.212+08:00 INFO 23996 --- [nio-8088-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring DispatcherServlet 'dispatcherServlet'
2024-09-24T14:04:26.213+08:00 INFO 23996 --- [nio-8088-exec-1] o.s.web.servlet.DispatcherServlet : Initializing Servlet 'dispatcherServlet'
2024-09-24T14:04:26.215+08:00 INFO 23996 --- [nio-8088-exec-1] o.s.web.servlet.DispatcherServlet : Completed initialization in 2 ms
2024-09-24T14:09:48.846+08:00 INFO 23996 --- [ main] com.et.config.DataLoader : Embeddings created.
查看redis是否存在向量化的数据
访问http://127.0.0.1:8088/hello 进行0 相似度搜索(top 10),返回得分前10的数据