逻辑回归(上):函数求导过程自推 LaTex 语法

背景

闲来无事翻了一下之前买的一个机器学习课程及之前记录的网络笔记,发现遇到公式都是截图,甚至是在纸上用笔推导的。重新整理一遍之前逻辑回归函数的学习笔记,主要是为了玩一下 LaTex 语法,写公式挺有意思的。

整理之前三篇笔记汇总如下:

  1. 逻辑回归(上):函数求导过程自推 LaTex 语法
  2. 逻辑回归(中):数学公式学习笔记 LaTeX 版
  3. 逻辑回归(下): Sigmoid 函数的发展历史

逻辑回归函数

逻辑回归的数学函数表达式为:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1

它在二维坐标系中的表现为:

因为其外形类似S形状,因而又称为Sigmoid函数。sigmoid,英/'sɪgmɒɪd/n. 乙状结肠(等于sigmoidal);S状弯曲。

导数公式

逻辑回归函数的导数公式为:
g ′ ( z ) = g ( z ) ( ( 1 − g ( z ) ) g^{'}(z)=g(z)((1-g(z)) g′(z)=g(z)((1−g(z))

第一步,确定公式。导数推导过程使用的是商的求导公式:

( u v ) ′ = u ′ v + u v ′ v 2 (\frac{u}{v})^{'}=\frac{u^{'}v+uv^{'}}{v^{2}} (vu)′=v2u′v+uv′

此处: u = 1 u = 1 u=1, v = 1 + e − z v=1+e^{-z} v=1+e−z。

第二步,分别对它们求导: u ′ = 0 u^{'}=0 u′=0, v ′ = e − z v^{'}=e^{-z} v′=e−z 。基本知识:常量的导数是 0,e 的 X 次幂的导数是本身。

第三步,计算数值:
g ′ ( z ) = 0 + e − z ( 1 + e − z ) 2 = e − z ( 1 + e − z ) 2 g^{'}(z)=\frac{0+e^{-z}}{(1+e^{-z})^{2}}=\frac{e^{-z}}{(1+e^{-z})^{2}} g′(z)=(1+e−z)20+e−z=(1+e−z)2e−z

第四步,对分子进行等价变形,先加 1 再减 1,得到:
g ′ ( z ) = 1 + e − z − 1 ( 1 + e − z ) 2 = 1 + e − z ( 1 + e − z ) 2 − 1 ( 1 + e − z ) 2 = 1 1 + e − z − 1 ( 1 + e − z ) 2 g^{'}(z)=\frac{1+e^{-z}-1}{(1+e^{-z})^{2}}=\frac{1+e^{-z}}{(1+e^{-z})^{2}}-\frac{1}{(1+e^{-z})^{2}}=\frac{1}{1+e^{-z}}-\frac{1}{(1+e^{-z})^{2}} g′(z)=(1+e−z)21+e−z−1=(1+e−z)21+e−z−(1+e−z)21=1+e−z1−(1+e−z)21

第五步,代入已知条件 g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1,所以上述公式就成为:
g ′ ( z ) = g ( z ) − ( g ( z ) ) 2 = g ( z ) ( 1 − g ( z ) ) g^{'}(z)=g(z)-({g(z)})^{2}=g(z)(1-g(z)) g′(z)=g(z)−(g(z))2=g(z)(1−g(z))

启示录

当年读书时,不知道高等数学具体在计算机中的应用过程,所以糊里糊涂的。现在看到相关的技术知识,反观公式时,奈何有种时过境迁的感觉,年龄大了,脑容量不够用啊......

相关推荐
孞㐑¥35 分钟前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风40 分钟前
代码随想录第十五天
数据结构·算法·leetcode
XX風1 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT061 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法
代码游侠2 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法
小鸡吃米…2 小时前
机器学习的商业化变现
人工智能·机器学习
想进个大厂2 小时前
代码随想录day37动态规划part05
算法
sali-tec2 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
子春一2 小时前
Flutter for OpenHarmony:构建一个 Flutter 四色猜谜游戏,深入解析密码逻辑、反馈算法与经典益智游戏重构
算法·flutter·游戏
人道领域2 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法