逻辑回归(上):函数求导过程自推 LaTex 语法

背景

闲来无事翻了一下之前买的一个机器学习课程及之前记录的网络笔记,发现遇到公式都是截图,甚至是在纸上用笔推导的。重新整理一遍之前逻辑回归函数的学习笔记,主要是为了玩一下 LaTex 语法,写公式挺有意思的。

整理之前三篇笔记汇总如下:

  1. 逻辑回归(上):函数求导过程自推 LaTex 语法
  2. 逻辑回归(中):数学公式学习笔记 LaTeX 版
  3. 逻辑回归(下): Sigmoid 函数的发展历史

逻辑回归函数

逻辑回归的数学函数表达式为:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1

它在二维坐标系中的表现为:

因为其外形类似S形状,因而又称为Sigmoid函数。sigmoid,英/'sɪgmɒɪd/n. 乙状结肠(等于sigmoidal);S状弯曲。

导数公式

逻辑回归函数的导数公式为:
g ′ ( z ) = g ( z ) ( ( 1 − g ( z ) ) g^{'}(z)=g(z)((1-g(z)) g′(z)=g(z)((1−g(z))

第一步,确定公式。导数推导过程使用的是商的求导公式:

( u v ) ′ = u ′ v + u v ′ v 2 (\frac{u}{v})^{'}=\frac{u^{'}v+uv^{'}}{v^{2}} (vu)′=v2u′v+uv′

此处: u = 1 u = 1 u=1, v = 1 + e − z v=1+e^{-z} v=1+e−z。

第二步,分别对它们求导: u ′ = 0 u^{'}=0 u′=0, v ′ = e − z v^{'}=e^{-z} v′=e−z 。基本知识:常量的导数是 0,e 的 X 次幂的导数是本身。

第三步,计算数值:
g ′ ( z ) = 0 + e − z ( 1 + e − z ) 2 = e − z ( 1 + e − z ) 2 g^{'}(z)=\frac{0+e^{-z}}{(1+e^{-z})^{2}}=\frac{e^{-z}}{(1+e^{-z})^{2}} g′(z)=(1+e−z)20+e−z=(1+e−z)2e−z

第四步,对分子进行等价变形,先加 1 再减 1,得到:
g ′ ( z ) = 1 + e − z − 1 ( 1 + e − z ) 2 = 1 + e − z ( 1 + e − z ) 2 − 1 ( 1 + e − z ) 2 = 1 1 + e − z − 1 ( 1 + e − z ) 2 g^{'}(z)=\frac{1+e^{-z}-1}{(1+e^{-z})^{2}}=\frac{1+e^{-z}}{(1+e^{-z})^{2}}-\frac{1}{(1+e^{-z})^{2}}=\frac{1}{1+e^{-z}}-\frac{1}{(1+e^{-z})^{2}} g′(z)=(1+e−z)21+e−z−1=(1+e−z)21+e−z−(1+e−z)21=1+e−z1−(1+e−z)21

第五步,代入已知条件 g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1,所以上述公式就成为:
g ′ ( z ) = g ( z ) − ( g ( z ) ) 2 = g ( z ) ( 1 − g ( z ) ) g^{'}(z)=g(z)-({g(z)})^{2}=g(z)(1-g(z)) g′(z)=g(z)−(g(z))2=g(z)(1−g(z))

启示录

当年读书时,不知道高等数学具体在计算机中的应用过程,所以糊里糊涂的。现在看到相关的技术知识,反观公式时,奈何有种时过境迁的感觉,年龄大了,脑容量不够用啊......

相关推荐
橘颂TA4 分钟前
机器人+工业领域=?
算法·机器人
小O的算法实验室1 小时前
2025年TRE SCI1区TOP,随机环境下无人机应急医疗接送与配送的先进混合方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小白程序员成长日记1 小时前
2025.11.06 力扣每日一题
算法·leetcode
暴风鱼划水1 小时前
算法题(Python)数组篇 | 4.长度最小的子数组
python·算法·力扣
gugugu.2 小时前
算法:二分算法类型题目总结---(含二分模版)
算法
大G的笔记本2 小时前
算法篇常见面试题清单
java·算法·排序算法
B站计算机毕业设计之家2 小时前
大数据python招聘数据分析预测系统 招聘数据平台 +爬虫+可视化 +django框架+vue框架 大数据技术✅
大数据·爬虫·python·机器学习·数据挖掘·数据分析
7澄12 小时前
深入解析 LeetCode 数组经典问题:删除每行中的最大值与找出峰值
java·开发语言·算法·leetcode·intellij idea
AI科技星2 小时前
宇宙的几何诗篇:当空间本身成为运动的主角
数据结构·人工智能·经验分享·算法·计算机视觉
前端小L2 小时前
二分查找专题(二):lower_bound 的首秀——精解「搜索插入位置」
数据结构·算法