python 实现knn sklearn K近邻分类算法

knn sklearn K近邻分类算法介绍

K近邻(K-Nearest Neighbors,简称KNN)分类算法是sklearn(scikit-learn)库中一种常用的机器学习算法,属于有监督学习范畴。它基于这样一个原理:对于待分类的样本,算法会找到训练数据集中与其最相似的K个样本(即K个最近邻),然后根据这K个样本的类别进行投票,将待分类样本归类到票数最多的类别中。

KNN算法的主要步骤包括:

构建已分类的数据集:作为训练集,其中包含了已知分类标签的样本数据。

计算距离:当输入没有标签的新数据时,算法会计算这个新数据与训练集中每个样本之间的距离。常用的距离度量方法包括欧氏距离和曼哈顿距离。

排序和选择:根据计算出的距离,选择与新数据最相似的K个样本(即K个最近邻)。

分类决策:根据这K个最近邻的类别标签,采用投票法(在分类问题中)或平均法(在回归问题中)来确定新数据的类别或预测值。

KNN算法在sklearn中的实现

在sklearn中,可以使用sklearn.neighbors.KNeighborsClassifier类来实现KNN分类算法。以下是一个简单的使用示例:

python 复制代码
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载iris数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建KNN分类器实例,设置邻居数为3
knn = KNeighborsClassifier(n_neighbors=3)

# 训练模型
knn.fit(X_train, y_train)

# 预测测试集
predictions = knn.predict(X_test)

# 评估模型(这里可以添加评估代码,如计算准确率等)

KNN算法的特点

简单直观:KNN算法的工作原理简单,容易理解和实现。

分类性能好:由于KNN算法基于实例进行学习,能够充分利用训练数据中的信息,因此在很多数据集上都能取得不错的分类效果。

对数据预处理要求低:KNN算法不需要对数据进行复杂的特征提取或降维操作,只需计算样本之间的距离即可进行分类。

通用性强:KNN算法可以应用于各种类型的数据和场景,包括文本、图像、声音等不同类型的数据,以及分类、回归等不同类型的问题。

然而,KNN算法也存在一些缺点,如计算量大(尤其是当数据集很大时),以及对K值的选择敏感等。因此,在实际应用中,需要根据具体场景和数据特点来选择合适的算法和参数。

knn sklearn K近邻分类算法python实现样例

以下是使用sklearn库实现K近邻分类算法的Python代码示例:

python 复制代码
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 准备训练集和测试集数据
X_train = [[1], [2], [3], [4], [5]]
y_train = [0, 0, 1, 1, 1]
X_test = [[2.5], [4.5], [7]]

# 创建K近邻分类器
knn = KNeighborsClassifier(n_neighbors=3)

# 使用训练集训练分类器
knn.fit(X_train, y_train)

# 使用分类器进行预测
y_pred = knn.predict(X_test)

# 打印预测结果
print("预测结果:", y_pred)

# 计算准确率
y_true = [0, 1, 1]
accuracy = accuracy_score(y_true, y_pred)
print("准确率:", accuracy)

在上述代码中,首先从sklearn.neighbors库中导入KNeighborsClassifier类和accuracy_score函数。然后,定义训练集和测试集数据。训练集数据X_train是一个二维列表,每个子列表代表一个样本的特征;训练集数据y_train是一个一维列表,代表每个样本的类别标签。测试集数据X_test是一个二维列表,每个子列表代表一个需要预测的样本的特征。

接着,创建一个K近邻分类器对象knn,并设置参数n_neighbors=3,表示要考虑的最近邻居的数量。

然后,使用训练集数据X_train和y_train来训练分类器knn。

接下来,使用分类器knn对测试集数据X_test进行预测,将预测结果保存在y_pred变量中。

最后,使用accuracy_score函数计算预测结果y_pred和实际标签y_true之间的准确率,并打印准确率。

相关推荐
databook10 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar11 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805112 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_12 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机18 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机19 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机19 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机19 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i20 小时前
drf初步梳理
python·django
每日AI新事件20 小时前
python的异步函数
python