车辆重识别(改进的去噪扩散概率模型)论文阅读2024/9/29

所谓改进的去噪扩散概率模型主要改进在哪些方面:

①对数似然值的改进

通过对噪声的那个方差和T进行调参,来实现改进。

②学习

这个参数也就是后验概率的方差。通过数据分析,发现在T非常大的情况下对样本质量几乎没有影响,也就是说随着我们增加更多的扩散步数,μ比更有影响力。但是通过分析发现,扩散过程中前几步对loss值贡献最大,那么我们可以对调整。通过实验发现,将的值确定在噪声方差和后验概率方差之间效果最好。顺便,我们将loss公式改为。将确定为一个较小的值,保证仍然是主要影响源。

③改善噪声时间表

我们发现之前的噪声时间表对于高分辨率的图像效果比较好,但是对于分辨率为64×64和32×32的图像效果不好。这项操作改变了每一时间步所加的噪声,进而改变了后续数据的分布。我们可以暂且认为控制了每一时间步所加入的噪声量,使得原本图像更慢地变为纯噪声数据,如果像之前的线性时间表,可能会出现图像已经变成纯噪声数据了,但是时间步还没到T,导致不断向图像加噪声,使得难以训练。

④降低梯度噪声

通过分析发现loss值是非常难优化的,因为梯度很嘈杂,也就是说梯度受到输入数据等其他因素影响非常大。这时候我们采取的方法是,把原来的loss值分解为各个时间步的loss值,对每个时间步的loss值进行优化,最后赋予权重,加起来求期望。如下图所示:

⑤提高采样速度

现有的采样技术使得训练非常耗时,我们采用重要性采样,使得不用跟随时间步一步一步采样,只有前一步采样完后一步才能采样。可以随意选取时间步序列,对任一时间步采样。

相关推荐
DisonTangor21 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫198221 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了21 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队1 天前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒1 天前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6001 天前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房1 天前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20111 天前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…1 天前
机器学习中的代价函数
人工智能·python·机器学习
HaiLang_IT1 天前
计算机视觉选题指南(2026版):图像分类、目标检测、分割等热门方向详解
计算机视觉·分类·课程设计