合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

名称

合成孔径雷达(SAR)海上石油泄露分割数据集

规模
  • 图像对数:8000对图像
  • 传感器类型
    • Sentinel-1 SAR 传感器
    • PALSAR (Phased Array type L-band Synthetic Aperture Radar) 传感器
  • 数据量:约400MB
数据特点
  • 多源数据:数据集包含来自Sentinel-1和PALSAR两种不同传感器的图像,提供了多样化的观测数据。
  • 高分辨率:SAR图像具有较高的空间分辨率,能够捕捉到细微的海洋表面特征,有助于准确检测石油泄露。
  • 时间序列:每对图像代表同一地点在不同时期的观测,便于分析石油泄露的变化和发展趋势。
  • 标注详细:每对图像附带了详细的分割掩码,明确标识了石油泄露区域。
标注方式
  • 分割掩码 :每个图像对都有一张对应的分割掩码图,其中:
    • 白色像素表示石油泄露区域
    • 黑色像素表示无泄露区域
应用场景
  • 环境监测:实时或定期监测海上石油泄露,及时发现并采取应对措施。
  • 灾害响应:在石油泄露事件发生后,快速评估泄露范围和影响,支持应急响应和清理工作。
  • 科学研究:研究石油泄露对海洋生态系统的影响,为环境保护提供科学依据。
  • 法规遵从:帮助相关机构确保海洋活动符合环保法规,防止非法排放。

数据集结构

假设数据集的文件结构如下:

复制代码
oil_spill_dataset/
├── images/
│   ├── sentinel_0001.jpg
│   ├── palsar_0001.jpg
│   ├── sentinel_0002.jpg
│   ├── palsar_0002.jpg
│   └── ...
├── masks/
│   ├── mask_0001.png
│   ├── mask_0002.png
│   └── ...
└── metadata.csv

metadata.csv 文件内容示例:

复制代码
image_id, sensor, date, location
sentinel_0001, Sentinel-1, 2023-01-01, 50.0000, 10.0000
palsar_0001, PALSAR, 2023-01-01, 50.0000, 10.0000
sentinel_0002, Sentinel-1, 2023-01-02, 50.0000, 10.0000
palsar_0002, PALSAR, 2023-01-02, 50.0000, 10.0000
...

代码示例

下面是一个简单的Python脚本示例,展示如何加载和可视化这些数据集的一部分。我们将使用OpenCV来读取图像,并从metadata.csv文件中解析图像的元数据。

复制代码
import os
import cv2
import pandas as pd

def load_sar_data(image_dir, mask_dir, metadata_file):
    images = []
    masks = []
    metadata = pd.read_csv(metadata_file)
    
    for index, row in metadata.iterrows():
        image_id = row['image_id']
        sensor = row['sensor']
        
        # 加载图像
        img_path = os.path.join(image_dir, f"{image_id}.jpg")
        image = cv2.imread(img_path)
        
        # 加载对应的分割掩码
        mask_filename = f"mask_{image_id.split('_')[1]}.png"
        mask_path = os.path.join(mask_dir, mask_filename)
        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
        
        if image is not None and mask is not None:
            images.append((image, sensor))
            masks.append(mask)
        else:
            print(f"Failed to load image or mask: {img_path} or {mask_path}")
    
    return images, masks, metadata

# 假设图像存储在'image'目录下,分割掩码存储在'masks'目录下,元数据文件为'metadata.csv'
image_dir = 'path_to_your_image_directory'
mask_dir = 'path_to_your_mask_directory'
metadata_file = 'path_to_your_metadata_file'

images, masks, metadata = load_sar_data(image_dir, mask_dir, metadata_file)

# 显示第一张图像及其对应的分割掩码
img, sensor = images[0]
mask = masks[0]

cv2.imshow('Image', img)
cv2.imshow('Mask', mask)
cv2.setWindowTitle('Image', f'Image: {sensor}')
cv2.waitKey(0)
cv2.destroyAllWindows()

说明

  • 路径设置 :请根据实际的数据集路径调整path_to_your_image_directorypath_to_your_mask_directorypath_to_your_metadata_file
  • 文件命名 :假设图像文件名分别为.jpg,分割掩码文件名为mask_0001.png等。如果实际命名规则不同,请相应修改代码。
  • 可视化:通过显示图像和对应的分割掩码,可以直观地看到石油泄露的区域。

进一步的应用

  • 训练深度学习模型:可以使用这个数据集来训练卷积神经网络(CNN)或其他机器学习模型,以实现自动化的石油泄露分割。
  • 数据增强:为了增加数据集的多样性和鲁棒性,可以使用数据增强技术(如旋转、翻转、缩放等)生成更多的训练样本。
  • 评估与优化:通过交叉验证和测试集评估模型性能,并不断优化模型参数,以提高分割准确率。

这个数据集对于海上石油泄露监测和环境保护具有重要的实用价值,可以帮助相关部门及时发现和处理泄露事件,减少对海洋生态系统的破坏。

相关推荐
极智视界2 天前
目标检测数据集 - 野生动物检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·野生动物检测
极智视界2 天前
目标检测数据集 - 排球比赛场景排球检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·排球检测
前网易架构师-高司机6 天前
带标注的引脚芯片识别数据集,可识别引脚,识别率94.8%,支持yolo,coco json,pascal voc xml
yolo·数据集·芯片·引脚
OpenBayes6 天前
Nemotron Speech ASR低延迟英文实时转写的语音识别服务;GLM-Image开源混合自回归与扩散解码架构的图像生成模型
人工智能·深度学习·机器学习·架构·数据集·语音识别·图像编辑
南麟剑首7 天前
LLM模型开发教程(六)模型训练的数据集获取与清洗
ai·llm·数据集·数据清洗·大模型开发·模型训练
音沐mu.9 天前
【50】背包数据集(有v5/v8模型)/YOLO背包检测
yolo·目标检测·数据集·背包检测·背包数据集
极智视界9 天前
无人机场景 - 目标检测数据集 - 环岛路况车辆检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·无人机场景环岛路况车辆检测
极智视界10 天前
目标检测数据集 - 鹦鹉检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·鹦鹉检测
@HNUSTer10 天前
基于 GEE 利用多波段合成的方法高效处理并下载数据——以 MODIS 潜热通量(LE)年均值数据产品下载为例
云计算·数据集·遥感大数据·gee·云平台·modis·潜热通量(le)
Ivy @12 天前
儿童人脸数据集制作
数据集