合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

名称

合成孔径雷达(SAR)海上石油泄露分割数据集

规模
  • 图像对数:8000对图像
  • 传感器类型
    • Sentinel-1 SAR 传感器
    • PALSAR (Phased Array type L-band Synthetic Aperture Radar) 传感器
  • 数据量:约400MB
数据特点
  • 多源数据:数据集包含来自Sentinel-1和PALSAR两种不同传感器的图像,提供了多样化的观测数据。
  • 高分辨率:SAR图像具有较高的空间分辨率,能够捕捉到细微的海洋表面特征,有助于准确检测石油泄露。
  • 时间序列:每对图像代表同一地点在不同时期的观测,便于分析石油泄露的变化和发展趋势。
  • 标注详细:每对图像附带了详细的分割掩码,明确标识了石油泄露区域。
标注方式
  • 分割掩码 :每个图像对都有一张对应的分割掩码图,其中:
    • 白色像素表示石油泄露区域
    • 黑色像素表示无泄露区域
应用场景
  • 环境监测:实时或定期监测海上石油泄露,及时发现并采取应对措施。
  • 灾害响应:在石油泄露事件发生后,快速评估泄露范围和影响,支持应急响应和清理工作。
  • 科学研究:研究石油泄露对海洋生态系统的影响,为环境保护提供科学依据。
  • 法规遵从:帮助相关机构确保海洋活动符合环保法规,防止非法排放。

数据集结构

假设数据集的文件结构如下:

oil_spill_dataset/
├── images/
│   ├── sentinel_0001.jpg
│   ├── palsar_0001.jpg
│   ├── sentinel_0002.jpg
│   ├── palsar_0002.jpg
│   └── ...
├── masks/
│   ├── mask_0001.png
│   ├── mask_0002.png
│   └── ...
└── metadata.csv

metadata.csv 文件内容示例:

image_id, sensor, date, location
sentinel_0001, Sentinel-1, 2023-01-01, 50.0000, 10.0000
palsar_0001, PALSAR, 2023-01-01, 50.0000, 10.0000
sentinel_0002, Sentinel-1, 2023-01-02, 50.0000, 10.0000
palsar_0002, PALSAR, 2023-01-02, 50.0000, 10.0000
...

代码示例

下面是一个简单的Python脚本示例,展示如何加载和可视化这些数据集的一部分。我们将使用OpenCV来读取图像,并从metadata.csv文件中解析图像的元数据。

import os
import cv2
import pandas as pd

def load_sar_data(image_dir, mask_dir, metadata_file):
    images = []
    masks = []
    metadata = pd.read_csv(metadata_file)
    
    for index, row in metadata.iterrows():
        image_id = row['image_id']
        sensor = row['sensor']
        
        # 加载图像
        img_path = os.path.join(image_dir, f"{image_id}.jpg")
        image = cv2.imread(img_path)
        
        # 加载对应的分割掩码
        mask_filename = f"mask_{image_id.split('_')[1]}.png"
        mask_path = os.path.join(mask_dir, mask_filename)
        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
        
        if image is not None and mask is not None:
            images.append((image, sensor))
            masks.append(mask)
        else:
            print(f"Failed to load image or mask: {img_path} or {mask_path}")
    
    return images, masks, metadata

# 假设图像存储在'image'目录下,分割掩码存储在'masks'目录下,元数据文件为'metadata.csv'
image_dir = 'path_to_your_image_directory'
mask_dir = 'path_to_your_mask_directory'
metadata_file = 'path_to_your_metadata_file'

images, masks, metadata = load_sar_data(image_dir, mask_dir, metadata_file)

# 显示第一张图像及其对应的分割掩码
img, sensor = images[0]
mask = masks[0]

cv2.imshow('Image', img)
cv2.imshow('Mask', mask)
cv2.setWindowTitle('Image', f'Image: {sensor}')
cv2.waitKey(0)
cv2.destroyAllWindows()

说明

  • 路径设置 :请根据实际的数据集路径调整path_to_your_image_directorypath_to_your_mask_directorypath_to_your_metadata_file
  • 文件命名 :假设图像文件名分别为.jpg,分割掩码文件名为mask_0001.png等。如果实际命名规则不同,请相应修改代码。
  • 可视化:通过显示图像和对应的分割掩码,可以直观地看到石油泄露的区域。

进一步的应用

  • 训练深度学习模型:可以使用这个数据集来训练卷积神经网络(CNN)或其他机器学习模型,以实现自动化的石油泄露分割。
  • 数据增强:为了增加数据集的多样性和鲁棒性,可以使用数据增强技术(如旋转、翻转、缩放等)生成更多的训练样本。
  • 评估与优化:通过交叉验证和测试集评估模型性能,并不断优化模型参数,以提高分割准确率。

这个数据集对于海上石油泄露监测和环境保护具有重要的实用价值,可以帮助相关部门及时发现和处理泄露事件,减少对海洋生态系统的破坏。

相关推荐
weixin_468466851 天前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像
数据岛12 天前
大模型应用的数字能源数据集
大数据·数据分析·数据集·能源
知来者逆15 天前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型
数据猎手小k16 天前
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
人工智能·算法·3d·数据集·机器学习数据集·ai大模型应用
数据猎手小k19 天前
GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
人工智能·语言模型·自然语言处理·数据集·机器学习数据集·ai大模型应用
dundunmm19 天前
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
论文阅读·数据挖掘·数据集·聚类·单细胞·细胞聚类·细胞测序
数据猎手小k19 天前
BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
人工智能·算法·数据集·音视频·机器学习数据集·ai大模型应用
数据猎手小k20 天前
HNTS-MRG 2024 Challenge:是一个包含200个头颈癌病例的磁共振图像及其标注的公开数据集,旨在推动AI在头颈癌放射治疗自动分割领域的研究。
人工智能·数据集·机器学习数据集·ai大模型应用
数据猎手小k1 个月前
OSPTrack:一个包含多个生态系统中软件包执行时生成的静态和动态特征的标记数据集,用于识别开源软件中的恶意行为。
数据集·开源软件·机器学习数据集·ai大模型应用
HyperAI超神经1 个月前
NeurIPS 2024 有效投稿达 15,671 篇,数据集版块内容丰富
人工智能·开源·自动驾驶·数据集·多模态·化学光谱·neurips 2024