合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

合成孔径雷达海上石油泄露分割数据集,共8000对图像,sentinel和palsar传感器,共400MB

名称

合成孔径雷达(SAR)海上石油泄露分割数据集

规模
  • 图像对数:8000对图像
  • 传感器类型
    • Sentinel-1 SAR 传感器
    • PALSAR (Phased Array type L-band Synthetic Aperture Radar) 传感器
  • 数据量:约400MB
数据特点
  • 多源数据:数据集包含来自Sentinel-1和PALSAR两种不同传感器的图像,提供了多样化的观测数据。
  • 高分辨率:SAR图像具有较高的空间分辨率,能够捕捉到细微的海洋表面特征,有助于准确检测石油泄露。
  • 时间序列:每对图像代表同一地点在不同时期的观测,便于分析石油泄露的变化和发展趋势。
  • 标注详细:每对图像附带了详细的分割掩码,明确标识了石油泄露区域。
标注方式
  • 分割掩码 :每个图像对都有一张对应的分割掩码图,其中:
    • 白色像素表示石油泄露区域
    • 黑色像素表示无泄露区域
应用场景
  • 环境监测:实时或定期监测海上石油泄露,及时发现并采取应对措施。
  • 灾害响应:在石油泄露事件发生后,快速评估泄露范围和影响,支持应急响应和清理工作。
  • 科学研究:研究石油泄露对海洋生态系统的影响,为环境保护提供科学依据。
  • 法规遵从:帮助相关机构确保海洋活动符合环保法规,防止非法排放。

数据集结构

假设数据集的文件结构如下:

oil_spill_dataset/
├── images/
│   ├── sentinel_0001.jpg
│   ├── palsar_0001.jpg
│   ├── sentinel_0002.jpg
│   ├── palsar_0002.jpg
│   └── ...
├── masks/
│   ├── mask_0001.png
│   ├── mask_0002.png
│   └── ...
└── metadata.csv

metadata.csv 文件内容示例:

image_id, sensor, date, location
sentinel_0001, Sentinel-1, 2023-01-01, 50.0000, 10.0000
palsar_0001, PALSAR, 2023-01-01, 50.0000, 10.0000
sentinel_0002, Sentinel-1, 2023-01-02, 50.0000, 10.0000
palsar_0002, PALSAR, 2023-01-02, 50.0000, 10.0000
...

代码示例

下面是一个简单的Python脚本示例,展示如何加载和可视化这些数据集的一部分。我们将使用OpenCV来读取图像,并从metadata.csv文件中解析图像的元数据。

import os
import cv2
import pandas as pd

def load_sar_data(image_dir, mask_dir, metadata_file):
    images = []
    masks = []
    metadata = pd.read_csv(metadata_file)
    
    for index, row in metadata.iterrows():
        image_id = row['image_id']
        sensor = row['sensor']
        
        # 加载图像
        img_path = os.path.join(image_dir, f"{image_id}.jpg")
        image = cv2.imread(img_path)
        
        # 加载对应的分割掩码
        mask_filename = f"mask_{image_id.split('_')[1]}.png"
        mask_path = os.path.join(mask_dir, mask_filename)
        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
        
        if image is not None and mask is not None:
            images.append((image, sensor))
            masks.append(mask)
        else:
            print(f"Failed to load image or mask: {img_path} or {mask_path}")
    
    return images, masks, metadata

# 假设图像存储在'image'目录下,分割掩码存储在'masks'目录下,元数据文件为'metadata.csv'
image_dir = 'path_to_your_image_directory'
mask_dir = 'path_to_your_mask_directory'
metadata_file = 'path_to_your_metadata_file'

images, masks, metadata = load_sar_data(image_dir, mask_dir, metadata_file)

# 显示第一张图像及其对应的分割掩码
img, sensor = images[0]
mask = masks[0]

cv2.imshow('Image', img)
cv2.imshow('Mask', mask)
cv2.setWindowTitle('Image', f'Image: {sensor}')
cv2.waitKey(0)
cv2.destroyAllWindows()

说明

  • 路径设置 :请根据实际的数据集路径调整path_to_your_image_directorypath_to_your_mask_directorypath_to_your_metadata_file
  • 文件命名 :假设图像文件名分别为.jpg,分割掩码文件名为mask_0001.png等。如果实际命名规则不同,请相应修改代码。
  • 可视化:通过显示图像和对应的分割掩码,可以直观地看到石油泄露的区域。

进一步的应用

  • 训练深度学习模型:可以使用这个数据集来训练卷积神经网络(CNN)或其他机器学习模型,以实现自动化的石油泄露分割。
  • 数据增强:为了增加数据集的多样性和鲁棒性,可以使用数据增强技术(如旋转、翻转、缩放等)生成更多的训练样本。
  • 评估与优化:通过交叉验证和测试集评估模型性能,并不断优化模型参数,以提高分割准确率。

这个数据集对于海上石油泄露监测和环境保护具有重要的实用价值,可以帮助相关部门及时发现和处理泄露事件,减少对海洋生态系统的破坏。

相关推荐
HyperAI超神经18 小时前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
DogDaoDao1 天前
深度学习常用开源数据集介绍【持续更新】
图像处理·人工智能·深度学习·ai·数据集
QQ_5192923289 天前
【大象数据集】大象图像识别 目标检测 机器视觉(含数据集)
目标检测·数据集·大象数据集
QQ_5192923289 天前
【水下生物数据集】 水下生物识别 深度学习 目标检测 机器视觉 yolo(含数据集)
python·目标检测·数据集·海洋生物数据集
QQ_5192923289 天前
【动植物毒性数据集】毒蛇识别 蘑菇毒性分类 人工智能 深度学习 目标检测 Python(含数据集)
深度学习·目标检测·数据集·动植物毒性数据集
极智视界11 天前
目标检测数据集 - 新能源车车牌检测数据集下载「包含VOC、COCO、YOLO三种格式」
人工智能·yolo·目标检测·数据集·voc·coco·算法训练
Abcat_o12 天前
【241027-论文阅读】DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection
论文阅读·数据集·图神经网络
QQ_51929232814 天前
草地杂草数据集野外草地数据集田间野草数据集YOLO格式VOC格式目标检测计算机视觉数据集
目标检测·数据集·野草数据集
QQ_51929232814 天前
昆虫种类识别数据集昆虫物种分类数据集YOLO格式VOC格式 目标检测 机器视觉数据集
目标检测·数据集·昆虫种类识别数据集
QQ_51929232814 天前
苹果瑕疵数据集苹果质量数据集YOLO格式VOC格式 深度学习 目标检测 数据集
目标检测·数据集·苹果瑕疵数据集