无人机视角垃圾检测数据集,26700余张无人机图像,超过4万标注信息,共3.6GB数据量,可用于环卫快速检查,垃圾快速定位等应用。

无人机视角垃圾检测,26700余张无人机图像,超过4万标注信息,共3.6GB数据量,可用于环卫快速检查,垃圾快速定位等应用。

名称

无人机视角垃圾检测数据集

规模
  • 图像数量:26700余张
  • 标注信息:超过4万条
  • 数据量:约3.6GB
数据特点
  • 高分辨率:所有图像均为高分辨率,能够提供丰富的细节信息,有助于提高检测精度。
  • 多样化场景:图像采集自多种环境和场景,包括城市街道、公园、海滩等,涵盖了不同类型的垃圾。
  • 详细标注:每张图像都附有详细的边界框标注,标明了垃圾的位置和类别。
  • 多类垃圾:数据集涵盖了多种常见的垃圾类型,如塑料瓶、纸张、烟蒂、食品包装等。
应用场景
  • 环卫快速检查:通过无人机进行大面积的环境监测,快速发现并定位垃圾,提高环卫工作的效率。
  • 垃圾快速定位:帮助相关部门及时清理垃圾,减少对环境的影响。
  • 智能城市管理:集成到智能城市管理系统中,提升城市的整体清洁度和管理水平。
  • 环境保护:支持环保项目,监测和评估特定区域的垃圾污染情况,为环境保护措施提供依据。
  • 研究与教育:用于科研机构的研究以及相关院校的教学,帮助学生和研究人员更好地了解垃圾检测技术。

数据集结构

假设数据集的文件结构如下:

drone_waste_detection_dataset/
├── images/
│   ├── image_0001.jpg
│   ├── image_0002.jpg
│   └── ...
├── annotations/
│   ├── annotation_0001.xml
│   ├── annotation_0002.xml
│   └── ...
└── metadata.csv

metadata.csv 文件内容示例:

image_id, location, date, time
image_0001, City Park, 2023-01-01, 10:00:00
image_0002, Beach, 2023-01-01, 10:05:00
...

annotations/annotation_0001.xml 示例(使用Pascal VOC格式):

<annotation>
    <folder>drone_waste_detection_dataset</folder>
    <filename>image_0001.jpg</filename>
    <size>
        <width>1024</width>
        <height>768</height>
        <depth>3</depth>
    </size>
    <object>
        <name>Plastic Bottle</name>
        <bndbox>
            <xmin>150</xmin>
            <ymin>200</ymin>
            <xmax>350</xmax>
            <ymax>400</ymax>
        </bndbox>
    </object>
    <object>
        <name>Paper</name>
        <bndbox>
            <xmin>400</xmin>
            <ymin>300</ymin>
            <xmax>500</xmax>
            <ymax>400</ymax>
        </bndbox>
    </object>
    ...
</annotation>

代码示例

下面是一个简单的Python脚本示例,展示如何加载和可视化这些数据集的一部分。我们将使用OpenCV来读取图像,并使用xml.etree.ElementTree来解析VOC格式的标注文件。

import os
import cv2
from xml.etree import ElementTree as ET
import pandas as pd

def parse_voc_annotation(xml_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()
    
    boxes = []
    labels = []
    
    for obj in root.findall('object'):
        label = obj.find('name').text
        bndbox = obj.find('bndbox')
        
        xmin = int(bndbox.find('xmin').text)
        ymin = int(bndbox.find('ymin').text)
        xmax = int(bndbox.find('xmax').text)
        ymax = int(bndbox.find('ymax').text)
        
        boxes.append([xmin, ymin, xmax, ymax])
        labels.append(label)
    
    return boxes, labels

def load_drone_data(image_dir, annotation_dir, metadata_file):
    images = []
    annotations = []
    metadata = pd.read_csv(metadata_file)
    
    for index, row in metadata.iterrows():
        image_id = row['image_id']
        location = row['location']
        date = row['date']
        time = row['time']
        
        # 加载图像
        img_path = os.path.join(image_dir, f"{image_id}.jpg")
        image = cv2.imread(img_path)
        
        # 加载对应的标注
        annotation_filename = f"annotation_{image_id.split('_')[1]}.xml"
        annotation_path = os.path.join(annotation_dir, annotation_filename)
        boxes, labels = parse_voc_annotation(annotation_path)
        
        if image is not None:
            images.append((image, location, date, time))
            annotations.append((boxes, labels))
        else:
            print(f"Failed to load image: {img_path}")
    
    return images, annotations, metadata

# 假设图像存储在'image'目录下,标注文件存储在'annotations'目录下,元数据文件为'metadata.csv'
image_dir = 'path_to_your_image_directory'
annotation_dir = 'path_to_your_annotation_directory'
metadata_file = 'path_to_your_metadata_file'

images, annotations, metadata = load_drone_data(image_dir, annotation_dir, metadata_file)

# 显示第一张图像及其对应的标注框
img, location, date, time = images[0]
boxes, labels = annotations[0]

for box, label in zip(boxes, labels):
    (xmin, ymin, xmax, ymax) = box
    cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
    cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)

cv2.imshow('Image with Annotations', img)
cv2.setWindowTitle('Image', f'Image: Location {location}, Date {date}, Time {time}')
cv2.waitKey(0)
cv2.destroyAllWindows()

说明

  • 路径设置 :请根据实际的数据集路径调整path_to_your_image_directorypath_to_your_annotation_directorypath_to_your_metadata_file
  • 文件命名 :假设图像文件名分别为.jpg,标注文件为.xml。如果实际命名规则不同,请相应修改代码。
  • 可视化:通过绘制边界框和标签,可以直观地看到图像中的垃圾位置和类别。

进一步的应用

  • 训练深度学习模型:可以使用这个数据集来训练卷积神经网络(CNN)或其他机器学习模型,以实现自动化的垃圾检测。
  • 数据增强:为了增加数据集的多样性和鲁棒性,可以使用数据增强技术(如旋转、翻转、缩放等)生成更多的训练样本。
  • 评估与优化:通过交叉验证和测试集评估模型性能,并不断优化模型参数,以提高检测准确率。

这个数据集对于无人机视角下的垃圾检测具有重要的实用价值,可以帮助相关部门高效地进行环境监测和垃圾清理工作,提升城市环境卫生水平。

相关推荐
命里有定数1 天前
Ubuntu问题 - 显示ubuntu服务器上可用磁盘空间 一条命令df -h
服务器·ubuntu·数据集
数据猎手小k2 天前
PCBS:由麻省理工学院和Google联合创建,揭示1.2M短文本间的相似性的大规模图聚类数据集。
机器学习·支持向量机·数据集·聚类·机器学习数据集·ai大模型应用
数据猎手小k5 天前
DAHL:利用由跨越 29 个类别的 8,573 个问题组成的基准数据集,评估大型语言模型在生物医学领域长篇回答的事实准确性。
人工智能·深度学习·语言模型·数据集·机器学习数据集·ai大模型应用
此星光明9 天前
GEE 数据集——美国gNATSGO(网格化国家土壤调查地理数据库)完整覆盖了美国所有地区和岛屿领土的最佳可用土壤信息
javascript·数据库·数据集·美国·数据·gee·土壤
OpenBayes9 天前
OpenBayes 一周速览丨VASP 教程上线!HPC 助力材料计算;AllClear 公共云层去除数据集发布,含超 23k 个全球分布的兴趣区域
人工智能·深度学习·机器学习·自然语言处理·开源·数据集·大语言模型
数据猎手小k12 天前
CulturalBench :一个旨在评估大型语言模型在全球不同文化背景下知识掌握情况的基准测试数据集
数据集·机器学习数据集·ai大模型应用
此星光明13 天前
2016年7月29日至2017年2月21日NASA大气层层析(ATom)任务甲醛(HCHO)、羟基(OH)和OH生产率的剖面积分柱密度
数据集·甲醛·nasa·羟基·密度·剖面·hcho
数据猎手小k13 天前
GS-Blur数据集:首个基于3D场景合成的156,209对多样化真实感模糊图像数据集。
数据集·机器学习数据集·ai大模型应用
HyperAI超神经14 天前
贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性
人工智能·深度学习·机器学习·数据集·ai4s·科研领域·工科
HyperAI超神经16 天前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金