【Text2SQL】当前在BIRD基准测试集上取得SOTA的论文

论文《The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models》探讨了在大型语言模型(LLMs)时代,文本到SQL(Text-to-SQL)转换中模式链接(Schema Linking)的作用和重要性。论文没有提出其他新的方法,而是提出了一个观点,即随着语言模型的发展,模式链接在文本到SQL任务中的重要性可能会降低,尤其是在模型的上下文窗口足够大以容纳整个模式时。作者通过3个实验验证了这一观点,并提出了一种不依赖模式链接的文本到SQL管道,该管道在准确性上取得了优异的成绩,在BIRD基准测试中排名第一,准确率达到71.83%。

摘要

目的 :模式链接是文本到SQL流程中的关键步骤,目的是检索目标数据库的表格和列,同时忽略不相关的部分。
问题 :不完美的模式链接可能会排除生成准确查询所需的列。
研究发现 :使用最新的大型语言模型时,即使存在大量不相关的模式元素,新模型也能在生成过程中利用相关的模式元素。
方法 :作者提出了一种完全省去模式链接的文本到SQL管道,以最小化过滤所需模式元素的问题。
结果:该方法在BIRD基准测试中排名第一,准确率达到71.83%。

实验

实验设计

实验1 :评估了不相关模式元素的包含对SQL生成的影响。作者创建了一个完美模式链接召回的场景,以确保SQL生成问题不是由于缺少所需列造成的。
实验2 :评估了实际模式链接技术对所需列的召回率的影响,以及召回率不完美对生成的下游影响。
实验3 :评估了在简化管道中加入增强、选择和校正技术对SQL生成准确性的影响。
实验3的方法:

1.增强(Augmentation):通过扩展列描述、添加查询提示和使用链式思考(Chain-of-Thought, CoT)规划来增加上下文信息。

2.校正(Correction):生成候选SQL查询后,基于数据库执行错误、数据库管理员指令和模型反馈进行迭代更正。

3.选择(Selection):使用自洽性(self-consistency)生成多个响应,并选择最一致的结果。

实验细节

实验设置 :所有实验中的温度都设置为零,并且尽可能使用结构化输出。
微调GPT-4o :迭代进行微调。在每次迭代中,首先在N个三元组样本上进行微调:自然语言查询、SQL查询和模式元素。然后,在BIRD的开发集上进行评估。
生成提示 :图2显示了用于SQL生成的提示结构以及示例模式、输入查询和查询提示。

实验结果

实验1 :发现随着假阳性率的降低,理想化执行准确性(IEX)提高,即包含不相关信息的列越少,SQL生成的准确性越高。
实验2 :发现随着模型的SQL生成能力提高,模式链接的好处减少。在某些情况下,由于缺少生成所需的列,模式链接甚至可能导致准确性的净降低。
实验3:发现增强、选择和校正技术对生成准确性有显著的正面影响,而模式链接则没有。

相关推荐
姚瑞南2 小时前
【Prompt实战】国际翻译小组
人工智能·prompt·gpt-3·文心一言·机器翻译
Jamence2 小时前
多模态大语言模型arxiv论文略读(109)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
小R资源3 小时前
免费无限使用GPT Plus、Claude Pro、Grok Super、Deepseek满血版
人工智能·gpt
掘我的金5 小时前
深入解析Stream函数与生成器本质
llm·aigc
掘我的金5 小时前
Prompt Cache 与 Streaming:核心机制与优化实践
llm·aigc
要努力啊啊啊7 小时前
策略梯度核心:Advantage 与 GAE 原理详解
论文阅读·人工智能·深度学习·自然语言处理
AI航海家(Ethan)8 小时前
RAG技术解析:实现高精度大语言模型知识增强
人工智能·语言模型·自然语言处理
拾忆-eleven8 小时前
NLP学习路线图(二十五):注意力机制
自然语言处理·nlp
soldierluo8 小时前
AI基础知识(LLM、prompt、rag、embedding、rerank、mcp、agent、多模态)
人工智能·prompt·embedding
java干货8 小时前
每日Prompt:双重曝光
prompt