矩阵学习过程中的一些思考

2024.09.27(学习鸢尾花书_矩阵力量_Ch20)

(1)所有中心过原点的椭圆都可以用一个二维矩阵表示,且特征值表示长短轴长度,特征向量表示长短轴所在方向的单位向量(表征椭圆旋转方向);

(2)一个矩阵可以看做一个对一个向量的线性变化,把这个矩阵进行特征值分解

Q = V A V T Q = VAV^T Q=VAVT

其中,V是特征向量,A是特征值矩阵。可以理解为A负责对原空间向量在各维度上的缩放,V主要负责旋转。故若原空间有一个封闭图形,则经过Q的变化后,只有A对其面积/体积产生影响,而行列式与体积/面积有关。|Q|即代表该变化对原空间封闭图形面积带来的影响,而又因为只有A对其面积/体积产生影响,故
∣ Q ∣ = ∣ A ∣ |Q| = |A| ∣Q∣=∣A∣

而A是对角矩阵,其行列式即为其对角元素的乘积,故特征值矩阵对角元素的乘积,即为原矩阵的特征值。
各个特征值的乘积即可理解为封闭图形从原空间到新空间,各个维度的拉伸情况,相乘即代表其体积的变化

相关推荐
charlie1145141913 小时前
CSS笔记4:CSS:列表、边框、表格、背景、鼠标与常用长度单位
css·笔记·学习·css3·教程
✎ ﹏梦醒͜ღ҉繁华落℘6 小时前
FreeRTOS学习笔记(应用)-- 各种 信号量的应用场景
笔记·学习
星星火柴9366 小时前
笔记 | C++面向对象高级开发
开发语言·c++·笔记·学习
BeingACoder7 小时前
【SAA】SpringAI Alibaba学习笔记(一):SSE与WS的区别以及如何注入多个AI模型
java·笔记·学习·saa·springai
安全不再安全7 小时前
免杀技巧 - 早鸟注入详细学习笔记
linux·windows·笔记·学习·测试工具·web安全·网络安全
BreezeJuvenile8 小时前
外设模块学习(8)——HC-SR04超声波模块(STM32)
stm32·单片机·嵌入式硬件·学习·超声波测距模块·hc-sr04
LBuffer8 小时前
破解入门学习笔记题三十八
笔记·学习
微露清风9 小时前
系统性学习C++-第十讲-stack 和 quene
java·c++·学习
PyAIGCMaster9 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
Elias不吃糖9 小时前
第四天学习总结:C++ 文件系统 × Linux 自动化 × Makefile 工程化
linux·c++·学习