基于keras 的神经网络股价预测模型

这些年从网上的各位大牛那学到很多,本着开源开放的精神,今天我决定开源我量化交易代码。输入股票代码,和训练的数据时间,自动预测股票未来的走势。。。。。。。。。。。。。。。。。。

复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May  7 17:55:28 2019

@author: lg
"""


from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
#from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack
from mpl_finance import candlestick_ochl
df=ts.get_hist_data('601857',start='2019-01-15',end='2019-05-07')
dd=df[['open','high','low','close']]
from mpl_finance import candlestick_ochl,candlestick_ohlc
#print(dd.values.shape[0])

dd1=dd .sort_index()

dd2=dd1.values.flatten()

g1=dd2[::-1]

g2=g1[0:120]

g3=g2[::-1]

gg=DataFrame(g3)

gg.T.to_excel('gg.xls') 



#dd3=pd.DataFrame(dd2)
#dd3.T.to_excel('d8.xls') 

g=dd2[0:140]
for i in range(dd.values.shape[0]-34):

    s=dd2[i*4:i*4+140]
    g=row_stack((g,s))
    
fg=DataFrame(g)
    
print(fg)    
fg.to_excel('fg.xls') 


#-*- coding: utf-8 -*-
#建立、训练多层神经网络,并完成模型的检验
#from __future__ import print_function
import pandas as pd


inputfile1='fg.xls' #训练数据
testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
data_mean = data_train.mean()
data_std = data_train.std()
data_train1 = (data_train-data_mean)/5  #数据标准化

y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
#y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列
                   
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation

model = Sequential() #建立模型
model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
#编译模型,损失函数为binary_crossentropy,用adam法求解
model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
model.save_weights('net.model') #保存模型参数

inputfile2='gg.xls' #预测数据
pre = pd.read_excel(inputfile2)                  

pre_mean = data_mean[0:120]
pre_std = pre.std()
pre1 = (pre-pre_mean)/10 #数据标准化
#pre1 = (pre-pre_mean)/pre.std()  #数据标准化                      
pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征                 
r = pd.DataFrame(model.predict(pre2))
rt=r*10+data_mean[120:140].as_matrix()
print(rt.round(2))



rt.to_excel('rt.xls') 

#print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix())



a=list(df.index[0:-1])

b=a[0]

c= datetime.datetime.strptime(b,'%Y-%m-%d')

d = date2num(c)


c1=[d+i+1 for i in range(5)]
c2=np.array([c1])

r1=rt.values.flatten()
r2=r1[0:4]
for i in range(4):

    r3=r1[i*4+4:i*4+8]
    r2=row_stack((r2,r3))
    
c3=column_stack((c2.T,r2))
r5=DataFrame(c3)

if len(c3) == 0:
    raise SystemExit

fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)

#ax.xaxis.set_major_locator(mondays)
#ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter)

#plot_day_summary(ax, quotes, ticksize=3)
#candlestick_ochl(ax, c3, width=0.6, colorup='r', colordown='g')
candlestick_ohlc(ax, c3, width=0.5, colorup='r', colordown='g')

ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

ax.grid(True)
#plt.title('000002')
plt.show()
相关推荐
Warren2Lynch9 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale10 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant10 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_5091383410 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo10 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms110 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑10 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei10 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing11 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
yusur11 小时前
边缘智算新引擎 DPU 驱动的算力革新
人工智能·科技·rdma·dpu