基于keras 的神经网络股价预测模型

这些年从网上的各位大牛那学到很多,本着开源开放的精神,今天我决定开源我量化交易代码。输入股票代码,和训练的数据时间,自动预测股票未来的走势。。。。。。。。。。。。。。。。。。

复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May  7 17:55:28 2019

@author: lg
"""


from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
#from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack
from mpl_finance import candlestick_ochl
df=ts.get_hist_data('601857',start='2019-01-15',end='2019-05-07')
dd=df[['open','high','low','close']]
from mpl_finance import candlestick_ochl,candlestick_ohlc
#print(dd.values.shape[0])

dd1=dd .sort_index()

dd2=dd1.values.flatten()

g1=dd2[::-1]

g2=g1[0:120]

g3=g2[::-1]

gg=DataFrame(g3)

gg.T.to_excel('gg.xls') 



#dd3=pd.DataFrame(dd2)
#dd3.T.to_excel('d8.xls') 

g=dd2[0:140]
for i in range(dd.values.shape[0]-34):

    s=dd2[i*4:i*4+140]
    g=row_stack((g,s))
    
fg=DataFrame(g)
    
print(fg)    
fg.to_excel('fg.xls') 


#-*- coding: utf-8 -*-
#建立、训练多层神经网络,并完成模型的检验
#from __future__ import print_function
import pandas as pd


inputfile1='fg.xls' #训练数据
testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
data_mean = data_train.mean()
data_std = data_train.std()
data_train1 = (data_train-data_mean)/5  #数据标准化

y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
#y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列
                   
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation

model = Sequential() #建立模型
model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
#编译模型,损失函数为binary_crossentropy,用adam法求解
model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
model.save_weights('net.model') #保存模型参数

inputfile2='gg.xls' #预测数据
pre = pd.read_excel(inputfile2)                  

pre_mean = data_mean[0:120]
pre_std = pre.std()
pre1 = (pre-pre_mean)/10 #数据标准化
#pre1 = (pre-pre_mean)/pre.std()  #数据标准化                      
pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征                 
r = pd.DataFrame(model.predict(pre2))
rt=r*10+data_mean[120:140].as_matrix()
print(rt.round(2))



rt.to_excel('rt.xls') 

#print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix())



a=list(df.index[0:-1])

b=a[0]

c= datetime.datetime.strptime(b,'%Y-%m-%d')

d = date2num(c)


c1=[d+i+1 for i in range(5)]
c2=np.array([c1])

r1=rt.values.flatten()
r2=r1[0:4]
for i in range(4):

    r3=r1[i*4+4:i*4+8]
    r2=row_stack((r2,r3))
    
c3=column_stack((c2.T,r2))
r5=DataFrame(c3)

if len(c3) == 0:
    raise SystemExit

fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)

#ax.xaxis.set_major_locator(mondays)
#ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter)

#plot_day_summary(ax, quotes, ticksize=3)
#candlestick_ochl(ax, c3, width=0.6, colorup='r', colordown='g')
candlestick_ohlc(ax, c3, width=0.5, colorup='r', colordown='g')

ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

ax.grid(True)
#plt.title('000002')
plt.show()
相关推荐
Apache Flink2 分钟前
Apache Flink 2.2.0: 推动实时数据与人工智能融合,赋能AI时代的流处理
人工智能·搜索引擎·百度·flink·apache
小二·5 分钟前
DeepSeek应该怎样提问?
人工智能
zhaodiandiandian6 分钟前
2025 AI 革命:从技术深耕到产业生态的全面重构
人工智能·重构
得贤招聘官11 分钟前
AI 招聘高效解决方案
人工智能
jimmyleeee11 分钟前
人工智能基础知识笔记二十三:构建一个可以查询数据库的Agent
人工智能·笔记
oliveray12 分钟前
动手搭建Flamingo(VQA)
人工智能·深度学习·vlms
EAIReport15 分钟前
AI数据报告产品在文旅景区运营中的实践与技术实现
人工智能
进阶的小蜉蝣15 分钟前
[Machine Learning] 机器学习中的Collate
人工智能·机器学习
币之互联万物17 分钟前
科技赋能金融 共建数字化跨境投资新生态
人工智能·科技·金融
非著名架构师21 分钟前
气象驱动的需求预测:零售企业如何通过气候数据分析实现库存精准控制
人工智能·深度学习·数据分析·transformer·风光功率预测·高精度天气预报数据