基于keras 的神经网络股价预测模型

这些年从网上的各位大牛那学到很多,本着开源开放的精神,今天我决定开源我量化交易代码。输入股票代码,和训练的数据时间,自动预测股票未来的走势。。。。。。。。。。。。。。。。。。

复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May  7 17:55:28 2019

@author: lg
"""


from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
#from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack
from mpl_finance import candlestick_ochl
df=ts.get_hist_data('601857',start='2019-01-15',end='2019-05-07')
dd=df[['open','high','low','close']]
from mpl_finance import candlestick_ochl,candlestick_ohlc
#print(dd.values.shape[0])

dd1=dd .sort_index()

dd2=dd1.values.flatten()

g1=dd2[::-1]

g2=g1[0:120]

g3=g2[::-1]

gg=DataFrame(g3)

gg.T.to_excel('gg.xls') 



#dd3=pd.DataFrame(dd2)
#dd3.T.to_excel('d8.xls') 

g=dd2[0:140]
for i in range(dd.values.shape[0]-34):

    s=dd2[i*4:i*4+140]
    g=row_stack((g,s))
    
fg=DataFrame(g)
    
print(fg)    
fg.to_excel('fg.xls') 


#-*- coding: utf-8 -*-
#建立、训练多层神经网络,并完成模型的检验
#from __future__ import print_function
import pandas as pd


inputfile1='fg.xls' #训练数据
testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
data_mean = data_train.mean()
data_std = data_train.std()
data_train1 = (data_train-data_mean)/5  #数据标准化

y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
#y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列
                   
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation

model = Sequential() #建立模型
model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
#编译模型,损失函数为binary_crossentropy,用adam法求解
model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
model.save_weights('net.model') #保存模型参数

inputfile2='gg.xls' #预测数据
pre = pd.read_excel(inputfile2)                  

pre_mean = data_mean[0:120]
pre_std = pre.std()
pre1 = (pre-pre_mean)/10 #数据标准化
#pre1 = (pre-pre_mean)/pre.std()  #数据标准化                      
pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征                 
r = pd.DataFrame(model.predict(pre2))
rt=r*10+data_mean[120:140].as_matrix()
print(rt.round(2))



rt.to_excel('rt.xls') 

#print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix())



a=list(df.index[0:-1])

b=a[0]

c= datetime.datetime.strptime(b,'%Y-%m-%d')

d = date2num(c)


c1=[d+i+1 for i in range(5)]
c2=np.array([c1])

r1=rt.values.flatten()
r2=r1[0:4]
for i in range(4):

    r3=r1[i*4+4:i*4+8]
    r2=row_stack((r2,r3))
    
c3=column_stack((c2.T,r2))
r5=DataFrame(c3)

if len(c3) == 0:
    raise SystemExit

fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)

#ax.xaxis.set_major_locator(mondays)
#ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter)

#plot_day_summary(ax, quotes, ticksize=3)
#candlestick_ochl(ax, c3, width=0.6, colorup='r', colordown='g')
candlestick_ohlc(ax, c3, width=0.5, colorup='r', colordown='g')

ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

ax.grid(True)
#plt.title('000002')
plt.show()
相关推荐
海森大数据4 分钟前
微软发布AI Agent五大可观测性实践,专治智能体“盲跑”难题
人工智能·microsoft
Christo310 分钟前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
qq_5088234012 分钟前
金融量化指标--4Sharpe夏普比率
人工智能
TMT星球25 分钟前
中国AI云市场报告:阿里云份额达35.8%,高于2至4名总和
人工智能·阿里云·云计算
Yingjun Mo30 分钟前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习
小关会打代码1 小时前
计算机视觉之多模板匹配
人工智能·计算机视觉
AI 嗯啦1 小时前
计算机视觉----opencv----身份证号码识别案例
人工智能·opencv·计算机视觉
Re_Yang092 小时前
2025年统计与数据分析领域专业认证发展指南
服务器·人工智能·数据分析
西猫雷婶2 小时前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
数新网络2 小时前
PyTorch
人工智能·pytorch·python