变电站红外检测数据集 1180张 变电站红外 标注voc yolo 13类

变电站红外检测数据集 1180张 变电站红外 标注voc yolo 13类

变电站红外检测数据集

名称

变电站红外检测数据集 (Substation Infrared Detection Dataset)

规模
  • 图像数量:1185张图像。
  • 类别:13种设备类型。
  • 标注个数:2813个标注。
数据划分
  • 训练集 (Train):通常占总数据的80%左右,约948张图像。
  • 验证集 (Validation):通常占总数据的20%左右,约237张图像。
类别和数量
  • disconnector3:31张图像,31个标注。
  • transformer:88张图像,89个标注。
  • bushing:130张图像,253个标注。
  • heat-sink:49张图像,49个标注。
  • conservator:56张图像,56个标注。
  • clamp:163张图像,307个标注。
  • insulator:257张图像,789个标注。
  • busbar:33张图像,33个标注。
  • arrester:112张图像,242个标注。
  • disconnector:206张图像,216个标注。
  • current-transformer:210张图像,437个标注。
  • breaker:149张图像,159个标注。
  • disconnector2:98张图像,152个标注。
数据特点
  • 高质量与高分辨率:所有图像均为高分辨率,适合进行详细的目标检测任务。
  • 多样性和复杂性:图像覆盖了多种变电站设备类型,增加了模型的泛化能力。
  • 详尽标注:每个图像都附有准确的边界框标注信息,确保了训练数据的质量。
应用领域
  • 电力设施维护:帮助电力公司实时监控变电站设备状态,预防故障发生。
  • 能源效率提升:通过热成像识别潜在的热量损失,提高能源利用效率。
  • 科研应用:为电力系统工程和热能科学的研究提供数据支持。
1. 安装依赖库

首先,确保安装了必要的依赖库。可以在项目目录中的requirements.txt文件中列出这些依赖库,然后运行以下命令进行安装:

复制代码
pip install -r requirements.txt

requirements.txt 文件内容示例:

复制代码
torch==1.10.0
torchvision==0.11.1
pandas==1.3.4
cv2
albumentations==1.1.0
2. 创建数据集

定义一个自定义的数据集类,并创建数据加载器。

复制代码
import os
import pandas as pd
import cv2
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
from albumentations import HorizontalFlip, RandomBrightnessContrast, ShiftScaleRotate, BboxFromMasks, BBoxFormatPASCAL
from albumentations.pytorch import ToTensorV2

# 自定义数据集类
class SubstationInfraredDataset(Dataset):
    def __init__(self, data_root, annotations_file, transforms=None):
        self.data_root = data_root
        self.annotations = pd.read_csv(annotations_file)
        self.transforms = transforms

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, idx):
        img_path = os.path.join(self.data_root, self.annotations.iloc[idx, 0])
        image = cv2.imread(img_path)
        bboxes = self.annotations.iloc[idx, 1:].values.reshape(-1, 4)  # bounding box coordinates
        labels = self.annotations.columns[1:]

        if self.transforms:
            augmented = self.transforms(image=image, bboxes=bboxes)
            image = augmented['image']
            bboxes = augmented['bboxes']

        return image, bboxes, labels

# 图像预处理
def get_transforms():
    """构建预处理函数"""
    _transform = [
        Resize(height=416, width=416, interpolation=cv2.INTER_LINEAR),
        HorizontalFlip(p=0.5),
        RandomBrightnessContrast(p=0.2),
        ShiftScaleRotate(p=0.5, shift_limit=0.0625, scale_limit=0.2, rotate_limit=15),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ToTensorV2(),
        BboxFromMasks(format=BBoxFormatPASCAL)
    ]
    return Compose(_transform)

# 创建数据加载器
train_dataset = SubstationInfraredDataset(
    data_root='path_to_your_data_directory',
    annotations_file='path_to_your_annotations.csv',
    transforms=get_transforms()
)
val_dataset = SubstationInfraredDataset(
    data_root='path_to_your_data_directory',
    annotations_file='path_to_your_annotations.csv',
    transforms=get_transforms()
)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
3. 训练YOLOv5模型

使用YOLOv5进行训练。

复制代码
!git clone https://github.com/ultralytics/yolov5  # 下载YOLOv5代码仓库
cd yolov5

# 使用YOLOv5训练模型
python train.py --weights yolov5s.pt --data path_to_your_data.yaml --name substation_infrared_detection --img 416 --batch 16 --epochs 100 --device 0
  • 数据配置文件 :创建一个名为data.yaml的数据配置文件,其中包含训练和验证数据集的信息。

    train: path_to_your_train_images
    val: path_to_your_val_images
    nc: 13 # 类别数量
    names: [disconnector3, transformer, bushing, heat-sink, conservator, clamp, insulator, busbar, arrester, disconnector, current-transformer, breaker, disconnector2]

4. 调整模型
  • 超参数调整:根据实际情况调整模型的超参数,例如学习率、批大小等。
  • 数据增强:增加数据增强策略,如旋转、缩放
相关推荐
极智视界3 天前
无人机场景 - 目标检测数据集 - 垂直视角车辆检测数据集下载
yolo·数据集·无人机·车辆检测·voc·coco·垂直视角
jay神6 天前
基于深度学习的交通流量预测系统
人工智能·深度学习·自然语言处理·数据集·计算机毕业设计
极智视界7 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机7 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
极智视界7 天前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
地球资源数据云7 天前
【最新更新】中国2000-2025平均值合成白天地表温度(LST)年度数据集
数据分析·数据集·遥感数据
音沐mu.7 天前
YOLO目标检测数据集大全【数据集+训练好的模型+训练检测教程】(持续更新)
人工智能·yolo·目标检测·数据集
前网易架构师-高司机9 天前
带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%
yolo·数据集··大块煤
地球资源数据云9 天前
【免费下载】中国5米分辨率坡度数据
数据分析·数据集·遥感数据
2401_841495649 天前
【数据挖掘】Apriori算法
python·算法·数据挖掘·数据集·关联规则挖掘·关联规则·频繁项集挖掘