变电站红外检测数据集 1180张 变电站红外 标注voc yolo 13类

变电站红外检测数据集 1180张 变电站红外 标注voc yolo 13类

变电站红外检测数据集

名称

变电站红外检测数据集 (Substation Infrared Detection Dataset)

规模
  • 图像数量:1185张图像。
  • 类别:13种设备类型。
  • 标注个数:2813个标注。
数据划分
  • 训练集 (Train):通常占总数据的80%左右,约948张图像。
  • 验证集 (Validation):通常占总数据的20%左右,约237张图像。
类别和数量
  • disconnector3:31张图像,31个标注。
  • transformer:88张图像,89个标注。
  • bushing:130张图像,253个标注。
  • heat-sink:49张图像,49个标注。
  • conservator:56张图像,56个标注。
  • clamp:163张图像,307个标注。
  • insulator:257张图像,789个标注。
  • busbar:33张图像,33个标注。
  • arrester:112张图像,242个标注。
  • disconnector:206张图像,216个标注。
  • current-transformer:210张图像,437个标注。
  • breaker:149张图像,159个标注。
  • disconnector2:98张图像,152个标注。
数据特点
  • 高质量与高分辨率:所有图像均为高分辨率,适合进行详细的目标检测任务。
  • 多样性和复杂性:图像覆盖了多种变电站设备类型,增加了模型的泛化能力。
  • 详尽标注:每个图像都附有准确的边界框标注信息,确保了训练数据的质量。
应用领域
  • 电力设施维护:帮助电力公司实时监控变电站设备状态,预防故障发生。
  • 能源效率提升:通过热成像识别潜在的热量损失,提高能源利用效率。
  • 科研应用:为电力系统工程和热能科学的研究提供数据支持。
1. 安装依赖库

首先,确保安装了必要的依赖库。可以在项目目录中的requirements.txt文件中列出这些依赖库,然后运行以下命令进行安装:

复制代码
pip install -r requirements.txt

requirements.txt 文件内容示例:

复制代码
torch==1.10.0
torchvision==0.11.1
pandas==1.3.4
cv2
albumentations==1.1.0
2. 创建数据集

定义一个自定义的数据集类,并创建数据加载器。

复制代码
import os
import pandas as pd
import cv2
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
from albumentations import HorizontalFlip, RandomBrightnessContrast, ShiftScaleRotate, BboxFromMasks, BBoxFormatPASCAL
from albumentations.pytorch import ToTensorV2

# 自定义数据集类
class SubstationInfraredDataset(Dataset):
    def __init__(self, data_root, annotations_file, transforms=None):
        self.data_root = data_root
        self.annotations = pd.read_csv(annotations_file)
        self.transforms = transforms

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, idx):
        img_path = os.path.join(self.data_root, self.annotations.iloc[idx, 0])
        image = cv2.imread(img_path)
        bboxes = self.annotations.iloc[idx, 1:].values.reshape(-1, 4)  # bounding box coordinates
        labels = self.annotations.columns[1:]

        if self.transforms:
            augmented = self.transforms(image=image, bboxes=bboxes)
            image = augmented['image']
            bboxes = augmented['bboxes']

        return image, bboxes, labels

# 图像预处理
def get_transforms():
    """构建预处理函数"""
    _transform = [
        Resize(height=416, width=416, interpolation=cv2.INTER_LINEAR),
        HorizontalFlip(p=0.5),
        RandomBrightnessContrast(p=0.2),
        ShiftScaleRotate(p=0.5, shift_limit=0.0625, scale_limit=0.2, rotate_limit=15),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ToTensorV2(),
        BboxFromMasks(format=BBoxFormatPASCAL)
    ]
    return Compose(_transform)

# 创建数据加载器
train_dataset = SubstationInfraredDataset(
    data_root='path_to_your_data_directory',
    annotations_file='path_to_your_annotations.csv',
    transforms=get_transforms()
)
val_dataset = SubstationInfraredDataset(
    data_root='path_to_your_data_directory',
    annotations_file='path_to_your_annotations.csv',
    transforms=get_transforms()
)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
3. 训练YOLOv5模型

使用YOLOv5进行训练。

复制代码
!git clone https://github.com/ultralytics/yolov5  # 下载YOLOv5代码仓库
cd yolov5

# 使用YOLOv5训练模型
python train.py --weights yolov5s.pt --data path_to_your_data.yaml --name substation_infrared_detection --img 416 --batch 16 --epochs 100 --device 0
  • 数据配置文件 :创建一个名为data.yaml的数据配置文件,其中包含训练和验证数据集的信息。

    train: path_to_your_train_images
    val: path_to_your_val_images
    nc: 13 # 类别数量
    names: [disconnector3, transformer, bushing, heat-sink, conservator, clamp, insulator, busbar, arrester, disconnector, current-transformer, breaker, disconnector2]

4. 调整模型
  • 超参数调整:根据实际情况调整模型的超参数,例如学习率、批大小等。
  • 数据增强:增加数据增强策略,如旋转、缩放
相关推荐
这张生成的图像能检测吗7 天前
(论文速读)多任务深度学习框架下基于Lamb波的多损伤数据集构建与量化算法
人工智能·深度学习·算法·数据集·结构健康监测
温柔哥`9 天前
【Nature Communications‘24‘06】预训练多模态大语言模型通过 SkinGPT-4 提升皮肤病学诊断能力
ai·微调·数据集·视觉语言大模型·皮肤病诊断大模型·nature 子刊·skingpt-4
深度学习lover13 天前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别
@HNUSTer16 天前
基于 GEE 利用 WorldPop 数据集批量导出 100 米分辨率人口影像数据与时序分析
数据分析·云计算·数据集·遥感大数据·gee·云平台·worldpop
@HNUSTer20 天前
基于 GEE 的 MODIS 数据逐月植被覆盖度(FVC)计算与数据导出完整流程
云计算·数据集·遥感大数据·gee·云平台·fvc·modis
OpenBayes22 天前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
笑脸惹桃花24 天前
目标检测数据集——路面裂缝检测数据集
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集
@HNUSTer1 个月前
基于 GEE MODIS 数据的区域干旱监测——从植被状况指数(VCI)计算到干旱分级与空间分布可视化
云计算·数据集·遥感大数据·gee·云平台·modis·干旱监测
@HNUSTer1 个月前
基于 GEE 利用 GHSL(100m)数据的区域建成区时空变化量化分析
云计算·数据集·遥感大数据·gee·空间分析·云平台·城市扩张
王哈哈^_^1 个月前
【数据集】【YOLO】【目标检测】建筑垃圾数据集 4256 张,YOLO建筑垃圾识别算法实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·数据集