∣ A ∣ = ∑ j = 1 n a i j A i j ( i = 1 , 2 , . . . , n ) = ∑ i = 1 n a i j A i j ( j = 1 , 2 , . . . , n ) ; A i j = ( − 1 ) i + j M i j . |A|=\sum_{j=1}^na_{ij}A_{ij}\ (i=1,2,...,n)=\sum_{i=1}^na_{ij}A_{ij}\ (j=1,2,...,n);\ A_ij=(-1)^{i+j}M_{ij}. ∣A∣=∑j=1naijAij (i=1,2,...,n)=∑i=1naijAij (j=1,2,...,n); Aij=(−1)i+jMij.
∑ j = 1 n a i j A k j = ∑ i = 1 n a i j A i k = 0 , i ≠ k . \sum_{j=1}^na_{ij}A_{kj}=\sum_{i=1}^na_{ij}A_{ik}=0,\ i\ne k. ∑j=1naijAkj=∑i=1naijAik=0, i=k.
副对角线: ∣ B n ∣ = ( − 1 ) n ( n − 1 ) 2 ∏ i = 1 n b i , n + 1 − i |B_n|=(-1)^\frac{n(n-1)}{2}\prod_{i=1}^nb_{i,n+1-i} ∣Bn∣=(−1)2n(n−1)∏i=1nbi,n+1−i.
范德蒙: ∣ D n ∣ = ∏ 1 ≤ j ≤ i ≤ n ( x i − x j ) |D_n|=\prod_{1\leq j\leq i\leq n}(x_i-x_j) ∣Dn∣=∏1≤j≤i≤n(xi−xj).
矩阵: n × n n\times n n×n 方阵构成有零因子非交换环; 单位元 ∣ E ∣ = 1 |E|=1 ∣E∣=1; 零因子 ∣ Z ∣ = 0 |Z|=0 ∣Z∣=0.
反对称: a i j + a j i = 0 ⟹ a i i = 0 a_{ij}+a_{ji}=0\implies a_{ii}=0 aij+aji=0⟹aii=0.
转置: a i j T = a j i a^T_{ij}=a_{ji} aijT=aji; ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT; ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT.
逆元: A A − 1 = A − 1 A = E ⟺ ∣ A ∣ ≠ 0 AA^{-1}=A^{-1}A=E\iff |A|\ne 0 AA−1=A−1A=E⟺∣A∣=0; ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} ∣A−1∣=∣A∣−1; A − 1 = ∣ A ∣ − 1 A ∗ A^{-1}=|A|^{-1}A^* A−1=∣A∣−1A∗; ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1.
A ∣ E \] → ∏ i = 1 k Q k \[ E ∣ A − 1 \] \[A\|E\]\\xrightarrow\[\]{\\prod_{i=1}\^kQ_k}\[E\|A\^{-1}\] \[A∣E\]∏i=1kQk \[E∣A−1\].
伴随: A A ∗ = A ∗ A = ∣ A ∣ E AA\^\*=A\^\*A=\|A\|E AA∗=A∗A=∣A∣E; ∣ A ∗ ∣ = ∣ A ∣ n − 1 \|A\^\*\|=\|A\|\^{n-1} ∣A∗∣=∣A∣n−1; A ∗ = ∣ A ∣ A − 1 A\^\*=\|A\|A\^{-1} A∗=∣A∣A−1; ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 2 ) (A\^\*)\^\*=\|A\|\^{n-2}A\\ (n\\geq 2) (A∗)∗=∣A∣n−2A (n≥2).
正交: A A T = A T A = E ⟹ ∣ A ∣ = ± 1 AA\^T=A\^TA=E\\implies \|A\|=\\pm 1 AAT=ATA=E⟹∣A∣=±1, 行(列)向量均为单位向量并两两正交.
初等变换: 对换( E i j E_{ij} Eij); 倍乘( E i ( k ) , k ≠ 0 E_i(k),\\ k\\ne 0 Ei(k), k=0); 倍加( E i j ( K ) E_{ij}(K) Eij(K)); 左乘为行变换, 右乘为列变换.
∣ E i j A ∣ = ∣ A E i j ∣ = − ∣ A ∣ \|E_{ij}A\|=\|AE_{ij}\|=-\|A\| ∣EijA∣=∣AEij∣=−∣A∣; ∣ E i ( k ) A ∣ = ∣ A E i ( k ) ∣ = k ∣ A ∣ \|E_i(k)A\|=\|AE_i(k)\|=k\|A\| ∣Ei(k)A∣=∣AEi(k)∣=k∣A∣; ∣ k A ∣ = k n ∣ A ∣ \|kA\|=k\^n\|A\| ∣kA∣=kn∣A∣; ∣ E i j ( k ) A ∣ = ∣ A E i j ( k ) ∣ = ∣ A ∣ \|E_{ij}(k)A\|=\|AE_{ij}(k)\|=\|A\| ∣Eij(k)A∣=∣AEij(k)∣=∣A∣.
等价: A ≅ B ⟺ ∃ ∣ P ∣ , ∣ Q ∣ ≠ 0 A\\cong B\\iff\\exists \|P\|,\|Q\|\\ne 0 A≅B⟺∃∣P∣,∣Q∣=0 s.t. P A Q = B PAQ=B PAQ=B.
秩: 非零子式最大阶数; 极大线性无关组中向量个数.
r ( A ) = 0 ⟺ A = O r(A)=0\\iff A=O r(A)=0⟺A=O.
r ( A ) = 1 ⟺ A ≠ O r(A)=1\\iff A\\ne O r(A)=1⟺A=O 且任意两行(列)成比例.
r ( A A T ) = r ( A T A ) = r ( A ) r(AA\^T)=r(A\^TA)=r(A) r(AAT)=r(ATA)=r(A).
r ( A n ) \< n ⟺ ∣ A n ∣ = 0 ⟺ r(A_n)\