论文笔记:Anytime Continual Learning for Open Vocabulary Classification

1. 挑战/问题

在开放词汇表图像分类中,随着时间的推移,模型需要不断学习新的标签,同时保留对旧标签的记忆。这导致几个挑战:

  1. 数据增量学习:模型需要在任意时间点有效地吸收新的训练样本。
  2. 模型持续改进:模型应在接收到新样本时不断更新和提高。
  3. 存储与计算效率:随着数据量的增加,如何高效存储和计算成为问题。

2. Contribution:

  1. 提出了一个新的开放词汇持续学习方法:anytime continual learning,目标是在收到新示例时高效改进,并保持随时预测任意标签集的能力。
  2. 动态权重调整:在部分微调模型和固定开放词汇表模型的预测之间动态调整权重。
  3. PCA压缩:引入了一种基于注意力加权的PCA压缩方法,减少存储和计算负担

3. Method

  1. 对具有固定标签嵌入的特征进行部分微调;
  2. 在线训练,每批次由新训练样本和类平衡存储样本组成;
  3. 在线学习每个标签的准确性,以有效组合原始模型预测和调整后的模型预测;
  4. 损失修改以实现"以上都不是"预测,这也稳定了开放词汇训练;
  5. 中间层特征压缩可减少训练样本的存储并提高速度,而不会造成太大的准确性损失。

4. results of evaluation/experiments

论文通过一系列实验验证了提出方法的有效性:

  1. 灵活的学习与推理:在数据增量、类别增量和任务增量学习中均优于现有方法。
  2. 零样本预测:在没有训练样本的情况下,模型也能进行有效的预测。
  3. 存储效率:压缩方法减少了30倍的数据存储需求,同时对预测精度的影响很小。

论文还探讨了该方法在不同设置下的性能,包括任务增量、类别增量和数据增量学习,以及灵活的推理设置。实验结果表明,AnytimeCL方法在所有设置和阶段中均优于现有技术,特别是在早期阶段,当有限的数据用于类别或任务时,该方法显示出显著的性能提升

相关推荐
无奈何杨3 分钟前
从“指点江山”到“赛博求雨”的心路历程
人工智能
老贾专利烩12 分钟前
智能健康项链专利拆解:ECG 与 TBI 双模态监测的硬件架构与信号融合
人工智能·科技·健康医疗
无奈何杨14 分钟前
MCP Server工具参数设计与AI约束指南
人工智能
青梅主码15 分钟前
中国在世界人工智能大会上发布《人工智能全球治理行动计划》:中美 AI 竞争白热化,贸易紧张局势下的全球治理新篇章
人工智能
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | CASCADE:用LLM+编译器技术破解JavaScript混淆难题
javascript·论文阅读·人工智能
呆头鹅AI工作室1 小时前
[2025CVPR-图象分类方向]CATANet:用于轻量级图像超分辨率的高效内容感知标记聚合
图像处理·人工智能·深度学习·目标检测·机器学习·计算机视觉·分类
向左转, 向右走ˉ1 小时前
为什么分类任务偏爱交叉熵?MSE 为何折戟?
人工智能·深度学习·算法·机器学习·分类·数据挖掘
抓个马尾女孩1 小时前
什么是熵、交叉熵、相对熵(KL散度)
人工智能·机器学习
张较瘦_2 小时前
[论文阅读] 人工智能 | 机器学习工作流的“救星”:数据虚拟化服务如何解决数据管理难题?
论文阅读·人工智能·机器学习
蓝卓工业操作系统3 小时前
天铭科技×蓝卓 | “1+2+N”打造AI驱动的汽车零部件行业智能工厂
人工智能·科技·汽车