论文笔记:Anytime Continual Learning for Open Vocabulary Classification

1. 挑战/问题

在开放词汇表图像分类中,随着时间的推移,模型需要不断学习新的标签,同时保留对旧标签的记忆。这导致几个挑战:

  1. 数据增量学习:模型需要在任意时间点有效地吸收新的训练样本。
  2. 模型持续改进:模型应在接收到新样本时不断更新和提高。
  3. 存储与计算效率:随着数据量的增加,如何高效存储和计算成为问题。

2. Contribution:

  1. 提出了一个新的开放词汇持续学习方法:anytime continual learning,目标是在收到新示例时高效改进,并保持随时预测任意标签集的能力。
  2. 动态权重调整:在部分微调模型和固定开放词汇表模型的预测之间动态调整权重。
  3. PCA压缩:引入了一种基于注意力加权的PCA压缩方法,减少存储和计算负担

3. Method

  1. 对具有固定标签嵌入的特征进行部分微调;
  2. 在线训练,每批次由新训练样本和类平衡存储样本组成;
  3. 在线学习每个标签的准确性,以有效组合原始模型预测和调整后的模型预测;
  4. 损失修改以实现"以上都不是"预测,这也稳定了开放词汇训练;
  5. 中间层特征压缩可减少训练样本的存储并提高速度,而不会造成太大的准确性损失。

4. results of evaluation/experiments

论文通过一系列实验验证了提出方法的有效性:

  1. 灵活的学习与推理:在数据增量、类别增量和任务增量学习中均优于现有方法。
  2. 零样本预测:在没有训练样本的情况下,模型也能进行有效的预测。
  3. 存储效率:压缩方法减少了30倍的数据存储需求,同时对预测精度的影响很小。

论文还探讨了该方法在不同设置下的性能,包括任务增量、类别增量和数据增量学习,以及灵活的推理设置。实验结果表明,AnytimeCL方法在所有设置和阶段中均优于现有技术,特别是在早期阶段,当有限的数据用于类别或任务时,该方法显示出显著的性能提升

相关推荐
SmallBambooCode3 分钟前
【人工智能】【Python】在Scikit-Learn中使用KNN(K最近邻算法)
人工智能·python·机器学习·scikit-learn·近邻算法
訾博ZiBo19 分钟前
AI日报 - 2025年3月7日
人工智能
梓羽玩Python21 分钟前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT22 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼23 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人24 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink28 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体31 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI34 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC35 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek