论文笔记:Anytime Continual Learning for Open Vocabulary Classification

1. 挑战/问题

在开放词汇表图像分类中,随着时间的推移,模型需要不断学习新的标签,同时保留对旧标签的记忆。这导致几个挑战:

  1. 数据增量学习:模型需要在任意时间点有效地吸收新的训练样本。
  2. 模型持续改进:模型应在接收到新样本时不断更新和提高。
  3. 存储与计算效率:随着数据量的增加,如何高效存储和计算成为问题。

2. Contribution:

  1. 提出了一个新的开放词汇持续学习方法:anytime continual learning,目标是在收到新示例时高效改进,并保持随时预测任意标签集的能力。
  2. 动态权重调整:在部分微调模型和固定开放词汇表模型的预测之间动态调整权重。
  3. PCA压缩:引入了一种基于注意力加权的PCA压缩方法,减少存储和计算负担

3. Method

  1. 对具有固定标签嵌入的特征进行部分微调;
  2. 在线训练,每批次由新训练样本和类平衡存储样本组成;
  3. 在线学习每个标签的准确性,以有效组合原始模型预测和调整后的模型预测;
  4. 损失修改以实现"以上都不是"预测,这也稳定了开放词汇训练;
  5. 中间层特征压缩可减少训练样本的存储并提高速度,而不会造成太大的准确性损失。

4. results of evaluation/experiments

论文通过一系列实验验证了提出方法的有效性:

  1. 灵活的学习与推理:在数据增量、类别增量和任务增量学习中均优于现有方法。
  2. 零样本预测:在没有训练样本的情况下,模型也能进行有效的预测。
  3. 存储效率:压缩方法减少了30倍的数据存储需求,同时对预测精度的影响很小。

论文还探讨了该方法在不同设置下的性能,包括任务增量、类别增量和数据增量学习,以及灵活的推理设置。实验结果表明,AnytimeCL方法在所有设置和阶段中均优于现有技术,特别是在早期阶段,当有限的数据用于类别或任务时,该方法显示出显著的性能提升

相关推荐
风静如云6 分钟前
Claude Code:进入dash模式
人工智能
TM1Club13 分钟前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
陈天伟教授16 分钟前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang1338308907516 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
板面华仔39 分钟前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
GAOJ_K1 小时前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui1 小时前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海1 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
king of code porter1 小时前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
愚公搬代码2 小时前
【愚公系列】《AI短视频创作一本通》004-AI短视频的准备工作(创作AI短视频的基本流程)
人工智能·音视频