论文笔记:Anytime Continual Learning for Open Vocabulary Classification

1. 挑战/问题

在开放词汇表图像分类中,随着时间的推移,模型需要不断学习新的标签,同时保留对旧标签的记忆。这导致几个挑战:

  1. 数据增量学习:模型需要在任意时间点有效地吸收新的训练样本。
  2. 模型持续改进:模型应在接收到新样本时不断更新和提高。
  3. 存储与计算效率:随着数据量的增加,如何高效存储和计算成为问题。

2. Contribution:

  1. 提出了一个新的开放词汇持续学习方法:anytime continual learning,目标是在收到新示例时高效改进,并保持随时预测任意标签集的能力。
  2. 动态权重调整:在部分微调模型和固定开放词汇表模型的预测之间动态调整权重。
  3. PCA压缩:引入了一种基于注意力加权的PCA压缩方法,减少存储和计算负担

3. Method

  1. 对具有固定标签嵌入的特征进行部分微调;
  2. 在线训练,每批次由新训练样本和类平衡存储样本组成;
  3. 在线学习每个标签的准确性,以有效组合原始模型预测和调整后的模型预测;
  4. 损失修改以实现"以上都不是"预测,这也稳定了开放词汇训练;
  5. 中间层特征压缩可减少训练样本的存储并提高速度,而不会造成太大的准确性损失。

4. results of evaluation/experiments

论文通过一系列实验验证了提出方法的有效性:

  1. 灵活的学习与推理:在数据增量、类别增量和任务增量学习中均优于现有方法。
  2. 零样本预测:在没有训练样本的情况下,模型也能进行有效的预测。
  3. 存储效率:压缩方法减少了30倍的数据存储需求,同时对预测精度的影响很小。

论文还探讨了该方法在不同设置下的性能,包括任务增量、类别增量和数据增量学习,以及灵活的推理设置。实验结果表明,AnytimeCL方法在所有设置和阶段中均优于现有技术,特别是在早期阶段,当有限的数据用于类别或任务时,该方法显示出显著的性能提升

相关推荐
天天代码码天天几秒前
C# OpenCvSharp 部署表格检测
人工智能·目标检测·表格检测
斯多葛的信徒5 分钟前
看看你的电脑可以跑 AI 模型吗?
人工智能·语言模型·电脑·llama
正在走向自律5 分钟前
AI 写作(六):核心技术与多元应用(6/10)
人工智能·aigc·ai写作
AI科技大本营6 分钟前
Anthropic四大专家“会诊”:实现深度思考不一定需要多智能体,AI完美对齐比失控更可怕!...
人工智能·深度学习
Cc不爱吃洋葱6 分钟前
如何本地部署AI智能体平台,带你手搓一个AI Agent
人工智能·大语言模型·agent·ai大模型·ai agent·智能体·ai智能体
网安打工仔6 分钟前
斯坦福李飞飞最新巨著《AI Agent综述》
人工智能·自然语言处理·大模型·llm·agent·ai大模型·大模型入门
AGI学习社7 分钟前
2024中国排名前十AI大模型进展、应用案例与发展趋势
linux·服务器·人工智能·华为·llama
AI_Tool7 分钟前
纳米AI搜索官网 - 新一代智能答案引擎
人工智能·搜索引擎
Damon小智7 分钟前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow
小虚竹8 分钟前
用AI辅导侄女大学物理的质点运动学问题
人工智能·chatgpt