机器学习-KNN

KNN:K最邻近算法(K-Nearest Neighbor,KNN)

用特征空间中距离待分类对象的最近的K个样例点的类别来预测。

投票法:K 个样例的对数类别。

  1. k=1:最近邻分类

  2. k 通常是奇数(因为我们根据这个K数据判断类别,如果是偶数可能出现类别对半的情况)

基于实例学习:不需要训练。

K 最邻近算法步骤:

  1. 计算待分类对象鱼所有样例点的距离,找出 K 个距离最近的点。(目前用欧氏距离)

  2. 通过这 K 个点的投票决定待分类对象的类别。

    1. 等权投票

    2. 加权投票:相似度加权

如图:K =3,分类结果是三角形

k=5,分类结果是正方形

如果我们进行了加权,即便是K=5,由于实例点离三角形特别近,分类结果也有可能为三角形

如何确定K

  1. K 太小,对噪音点敏感(早点附近的点,将都被分错)

  2. K太大,模型不细致(如果 K 是所有样本数,那么分类结果将是训练数据中数量最多的类别,相当于朴素贝叶斯分类器中,只用了先验概率)

  3. K权限 模型复杂度和经验风险

  4. 交差验证

K-D Tree(K-Dimensional Tree)

KD Tree 是一种数据结构。对 k 维空间里的点进行组织,存储为树形的数据结构。

KD Tree 为K维空间进行分割,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。

图1

如图1:空间先按红线分割,然后前后两个空间分别按绿色线分割,然后在四个空间中再按蓝色线分割

建树:

  1. 对当前所有点,依次按照一个维度的中位数为切分线进行切割,将当前区域分为两个区域,小于中位数放到左边,大于中位数放到右边。

  2. 重复步骤1,直到没有点可分停止。

查找方法:(查找目标为x)

  1. 在KD 树中自上而下按照建树的规则,找 x 对应的叶子节点,当做最近点,计算当前最近距离。

  2. 从该叶节点开始,从底向上,重复直到根节点:计算当前节点的父节点的切分面到 x 的距离;如果该距离小于当前前最优距离,则在改父节点的另一子区域查找最近点,否则忽略该子区域,直接到上一层查找。

KD 树练习:

数据(2,3)(5,4)(9,6)(4,7)(8,1)(7,2)

查找最近邻近点:(4,5)(4,6)

图2 图3

注意:

  1. 图2 示:分割维度是依次轮换换着的。

  2. K>1:我们需要在KD Tree中维护一个数据,只要到分割面距离或者到其他节点的距离小于数组总最大距离,就必须计算,因有可能存在节点去替换数组中的节点。

  3. KD这个数组,我是在前几轮算节点距离时,给填满的。

相关推荐
IT古董28 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo5 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊7 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue7 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏7 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3357 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩7 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp