车辆种类分类识别数据集,可以识别7种汽车类型,已经按照7:2:1比 例划分数据集,训练集1488张、验证集507张,测试集31张, 共计2026张。

车辆种类分类识别数据集,可以识别7种汽车类型,已经按照7:2:1比 例划分数据集,训练集1488张、验证集507张,测试集31张, 共计2026张。 数据集分为一类客车(tinycar) ,=类客车(midcar) ,三类 客车(bigcar) , - -类货车(smalltruck) ,= _类货车(bigtru ck) ,油罐车(oil truck) 以及特殊车辆(specialcar) ,共计7 个种类。 nc:7. names: ['tinycar'midcar,'bigcar'smalltruck,'bigtruck,'oil truck',' specialcar']

车辆种类识别数据集

规模
  • 图像数量:2026张
  • 类别数量:7种
  • 数据量:未提供具体数据量,但通常这类数据集可能达到数百MB到几GB。
类别
  • 一类客车 (Tiny Car, tinycar)
  • 二类客车 (Mid Car, midcar)
  • 三类客车 (Big Car, bigcar)
  • 一类货车 (Small Truck, smalltruck)
  • 二类货车 (Big Truck, bigtruck)
  • 油罐车 (Oil Truck, oiltruck)
  • 特殊车辆 (Special Car, specialcar)

每类车辆的样本数量根据比例划分:

  • 训练集:1488张
  • 验证集:507张
  • 测试集:31张
数据特点
  • 高质量图像:所有图像均为高分辨率,提供了丰富的细节信息,有助于提高检测精度。
  • 多样化车辆类型:涵盖了七种常见的车辆类型,确保模型能够适应多种类型的车辆。
  • 详细标注:每张图像都附有详细的边界框标注(txt格式),标明了车辆的位置和大小。
  • 预处理数据:数据集已经按照7:2:1的比例划分好训练集、验证集和测试集,可以直接用于训练。
应用场景
  • 智能交通系统:在城市交通监控中自动识别不同类型的车辆,提高交通管理效率。
  • 自动驾驶:帮助自动驾驶汽车更好地理解和分类道路上的各种车辆,提升驾驶安全性。
  • 停车场管理:在停车场管理系统中自动识别车辆类型,便于分类管理和收费。
  • 物流管理:在物流运输过程中,自动识别货车类型,优化货物装载和运输方案。
  • 研究与教育:用于科研机构的研究以及相关院校的教学,帮助学生和研究人员更好地了解车辆识别技术。
  • 安全监控:集成到视频监控系统中,自动识别特定类型的车辆,支持安全监控和预警。

数据集结构

假设数据集的文件结构如下:

复制代码
vehicle_classification_dataset/
├── images/
│   ├── train/
│   │   ├── 0001.jpg
│   │   ├── 0002.jpg
│   │   └── ...
│   ├── val/
│   │   ├── 0001.jpg
│   │   ├── 0002.jpg
│   │   └── ...
│   └── test/
│       ├── 0001.jpg
│       ├── 0002.jpg
│       └── ...
├── labels_txt/
│   ├── train/
│   │   ├── 0001.txt
│   │   ├── 0002.txt
│   │   └── ...
│   ├── val/
│   │   ├── 0001.txt
│   │   ├── 0002.txt
│   │   └── ...
│   └── test/
│       ├── 0001.txt
│       ├── 0002.txt
│       └── ...
└── metadata.csv

metadata.csv 文件内容示例:

复制代码

深色版本

image_id, category, split
train/0001.jpg, tinycar, train
train/0002.jpg, midcar, train
val/0001.jpg, bigcar, val
val/0002.jpg, smalltruck, val
test/0001.jpg, bigtruck, test
...

labels_txt/0001.txt 示例(YOLO格式):

0 0.5 0.5 0.3 0.3  # 类别ID, 中心点x, 中心点y, 宽度, 高度

代码示例

下面是一个完整的Python脚本示例,展示如何加载数据集、使用预训练的YOLOv5模型进行车辆种类识别,并可视化检测结果。我们将使用PyTorch和YOLOv5的相关库。

1. 安装依赖库

首先,确保安装了必要的依赖库。可以在项目目录中的requirements.txt文件中列出这些依赖库,然后运行以下命令进行安装:

pip install -r requirements.txt

requirements.txt 文件内容示例:

torch==1.10.0
torchvision==0.11.1
opencv-python-headless==4.5.4.60
yolov5 @ git+https://github.com/ultralytics/yolov5.git
2. 加载数据集和预训练模型
复制代码
import os
import cv2
import torch
import numpy as np
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.general import (check_img_size, non_max_suppression, scale_coords)
from yolov5.utils.torch_utils import select_device
from yolov5.utils.plots import Annotator, colors

# 设置设备
device = select_device('')  # 使用默认设备(通常是GPU,如果没有则使用CPU)

# 加载预训练模型
model_path = 'path_to_your_model_directory/yolov5s_vehicle_detection.pt'
model = DetectMultiBackend(model_path, device=device, dnn=False, data=None, fp16=False)
imgsz = check_img_size(640, s=model.stride)  # 检查图像尺寸

# 设置模型为评估模式
model.eval()

# 加载图像
def load_image(image_path):
    img = cv2.imread(image_path)
    if img is None:
        print(f"Failed to load image: {image_path}")
        return None
    return img

# 进行推理
def detect_vehicles(img, model, imgsz, device):
    # 转换图像
    img = [letterbox(img, new_shape=imgsz, auto=True)[0]]
    img = np.stack(img, 0)
    img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
    img = np.ascontiguousarray(img)

    # 将图像转换为Tensor
    img = torch.from_numpy(img).to(device)
    img = img.float()
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if len(img.shape) == 3:
        img = img[None]  # 扩展批处理维度

    # 推理
    with torch.no_grad():
        pred = model(img, augment=False, visualize=False)[0]
        pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, max_det=1000)

    # 处理预测结果
    for i, det in enumerate(pred):  # 每张图像的检测结果
        if len(det):
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape[2:]).round()
            annotator = Annotator(img[i].permute(1, 2, 0).cpu().numpy(), line_width=3, example=str('vehicle'))
            for *xyxy, conf, cls in reversed(det):
                label = f'{names[int(cls)]} {conf:.2f}'
                annotator.box_label(xyxy, label, color=colors(int(cls), True))
            return annotator.result()
    return img[0].permute(1, 2, 0).cpu().numpy()

# 字母框调整
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    shape = img.shape[:2]  # 当前形状 [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # 只缩小,不放大
        r = min(r, 1.0)

    ratio = r, r  # 宽高比
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # 最小矩形
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # 拉伸
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # 宽高比

    dw /= 2  # 分配到两边
    dh /= 2

    if shape[::-1] != new_unpad:  # 缩放
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # 添加边框
    return img, ratio, (dw, dh)

# 主函数
def main(image_dir, model, imgsz, device):
    names = ['tinycar', 'midcar', 'bigcar', 'smalltruck', 'bigtruck', 'oiltruck', 'specialcar']
    
    for image_name in os.listdir(image_dir):
        if image_name.endswith('.jpg'):
            image_path = os.path.join(image_dir, image_name)
            img = load_image(image_path)
            if img is not None:
                result = detect_vehicles(img, model, imgsz, device)
                cv2.imshow('Vehicle Detection', result)
                cv2.setWindowTitle('Vehicle Detection', f'Image: {image_name}')
                if cv2.waitKey(0) & 0xFF == ord('q'):
                    break
    cv2.destroyAllWindows()

# 假设图像存储在'image'目录下
image_dir = 'path_to_your_image_directory'

# 运行主函数
main(image_dir, model, imgsz, device)

说明

  • 路径设置 :请根据实际的数据集路径调整path_to_your_image_directorypath_to_your_model_directory
  • 文件命名 :假设图像文件名分别为.jpg。如果实际命名规则不同,请相应修改代码。
  • 可视化:通过绘制边界框和标注置信度,可以直观地看到图像中的车辆位置和类型。

进一步的应用

  • 训练深度学习模型:可以使用这个数据集来进一步训练或微调YOLOv5模型,以提高检测精度。
  • 数据增强:为了增加数据集的多样性和鲁棒性,可以使用数据增强技术(如旋转、翻转、缩放等)生成更多的训练样本。
  • 评估与优化:通过交叉验证和测试集评估模型性能,并不断优化模型参数,以提高检测准确率。

这个数据集对于车辆种类识别具有重要的实用价值,可以帮助相关部门及时发现和处理不同类型车辆,提升交通管理和安全水平。

相关推荐
老猿讲编程22 分钟前
航展畅想:从F35机载软件研发来看汽车车载软件研发
汽车·车载软件研发
qq229511650224 分钟前
微信小程序的汽车维修预约管理系统
微信小程序·小程序·汽车
Renderbus瑞云渲染农场12 小时前
云渲染与汽车CGI图像技术优势和劣势
汽车
美格智能15 小时前
美格智能5G车规级通信模组: 5G+C-V2X连接汽车通信未来十年
5g·汽车
车载诊断技术15 小时前
电子电气架构 --- 整车控制系统
网络·架构·汽车·soa·电子电器架构
HyperAI超神经18 小时前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
叫我:松哥20 小时前
基于python多准则决策分析的汽车推荐算法设计与实现
python·算法·数据挖掘·数据分析·汽车·推荐算法
ACRELKY20 小时前
新能源汽车与公共充电桩布局
汽车
来可小闵儿1 天前
智诊小助手-AP/Station模式切换
汽车·电脑
DogDaoDao1 天前
深度学习常用开源数据集介绍【持续更新】
图像处理·人工智能·深度学习·ai·数据集