OpenCAEPoro优化(2)

前言:

首先有一点要注意:

修改代码时,要注意命名空间的冲突问题(主要是头文件中)

作者了解了相关这个项目的一些背景介绍;得到的主要信息是:这种大型程序一般都是优化的比较完善了,即使有优化空间,也很小了(不知道我们从github拉下来的是不是这样)

自上次发完 OpenCAEPoro优化(1)之后,作者使用vtune找出了程序热点图(发现并没有分析出什么有效信息),并整理了一下思路,打算对代码部分做出如下改动:

作者在此提供一个新思路(仅供参考哈):根据文件名称,推测出相应的.cpp文件的作用,并结合vtune分析其是不是执行主要功能的函数

一.更错

由于之前没有设置多机之间的免密通信,导致程序并没有真正在多机上跑

1.在gpu01上生成ssh密钥

运行下述命令

bash 复制代码
ssh-keygen -t rsa

2.将公钥复制到其他机器

在gpu01上输入如下命令并回车

bash 复制代码
ssh-copy-id gaohaixiao@gpu02

gpu03 gpu04 同理

3.测试免密登录

bash 复制代码
ssh gaohaixiao@gpu02

gpu03 gpu04 同理

4.使用SSH并行执行任务

可以通过循环来实现:

bash 复制代码
for i in {1..4}; do
    ssh gaohaixiao@gpu0$i 'mpirun -np 50 -machinefile ~/OpenCAEPoro_ASC2024/hostfile ./testOpenCAEPoro ./data/case1/case1.data verbose=1' &
done

二:对内存分配进行优化

这里以AllWells.cpp为例子

bash 复制代码
void AllWells::InputParam(const ParamWell& paramWell, const Domain& domain)
{
    OCP_FUNCNAME;

    // 预分配内存以提高性能
    solvents.reserve(paramWell.solSet.size());
    solvents.insert(solvents.end(), paramWell.solSet.begin(), paramWell.solSet.end());

    Psurf = paramWell.Psurf;
    Tsurf = paramWell.Tsurf;

    const auto& my_well = domain.GetWell();
    numWell = my_well.size();

    // 使用指针减少内存分配开销
    wells.reserve(numWell);
    for (USI w = 0; w < numWell; w++) {
        wells.push_back(paramWell.thermal ? new PeacemanWellT() : new PeacemanWellIsoT());
    }

    USI t = paramWell.criticalTime.size();
    vector<USI> wellOptTime;
    vector<WellOptPair> tmpOptParam;

    for (USI wdst = 0; wdst < numWell; wdst++) {
        const OCP_USI wsrc = my_well[wdst];
        const auto& wellSrc = paramWell.well[wsrc];

        // 使用引用避免多次访问
        auto* currentWell = wells[wdst];
        currentWell->name = wellSrc.name;
        currentWell->group = wellSrc.group;
        currentWell->depth = wellSrc.depth;
        currentWell->InputPerfo(wellSrc, domain, wsrc);
        currentWell->Psurf = Psurf;
        currentWell->Tsurf = Tsurf;
        currentWell->ifUseUnweight = wellSrc.ifUseUnweight;

        currentWell->optSet.resize(t);

        // 验证选项参数的数量
        const USI n0 = wellSrc.optParam.size();
        if (n0 == 0) {
            OCP_ABORT("NO Well Opt Param for -- " + wellSrc.name);
        }

        // 过滤重复的optParam.d
        tmpOptParam.clear();
        tmpOptParam.reserve(n0);
        for (USI i = 0; i < n0; i++) {
            if (i == 0 || wellSrc.optParam[i].d != wellSrc.optParam[i - 1].d) {
                tmpOptParam.push_back(wellSrc.optParam[i]);
            }
        }

        const USI n = tmpOptParam.size();
        wellOptTime.clear();
        wellOptTime.resize(n + 1);
        for (USI i = 0; i < n; i++) {
            wellOptTime[i] = tmpOptParam[i].d;
        }
        wellOptTime.back() = t;

        // 填充optSet
        for (USI i = 0; i < n; i++) {
            for (USI d = wellOptTime[i]; d < wellOptTime[i + 1]; d++) {
                currentWell->optSet[d] = WellOpt(tmpOptParam[i].opt);
            }
        }
    }
}

核心步骤:
减少内存分配次数:对于solvents的填充,使用insert方法而不是循环,这样可以减少多次调用push_back的开销

三.对循环进行优化

使用OpenMP

OpenMP 是一个用于支持多平台共享内存并行编程的 API,非常适合循环并行化

具体做法是在循环前加上下面这段代码,实现循环并行化

cpp 复制代码
// 使用 OpenMP 并行化循环
#pragma omp parallel for reduction(+:total)

四.优化结果

根据优化(1)中的经验,作者采用四机并行,52进程

结果如下:

可以看出,多机并行,优化循环,对内存分配进行优化是有效果的

相关推荐
广而不精zhu小白2 小时前
CentOS Stream 9 挂载Windows共享FTP文件夹
linux·windows·centos
一休哥助手2 小时前
全面解析 Linux 系统监控与性能优化
linux·运维·性能优化
二进制杯莫停2 小时前
掌控网络流量的利器:tcconfig
linux
watl02 小时前
【Android】unzip aar删除冲突classes再zip
android·linux·运维
赵大仁3 小时前
在 CentOS 7 上安装 Node.js 20 并升级 GCC、make 和 glibc
linux·运维·服务器·ide·ubuntu·centos·计算机基础
vvw&3 小时前
Docker Build 命令详解:在 Ubuntu 上构建 Docker 镜像教程
linux·运维·服务器·ubuntu·docker·容器·开源
冷曦_sole3 小时前
linux-21 目录管理(一)mkdir命令,创建空目录
linux·运维·服务器
最后一个bug3 小时前
STM32MP1linux根文件系统目录作用
linux·c语言·arm开发·单片机·嵌入式硬件
dessler3 小时前
Docker-Dockerfile讲解(二)
linux·运维·docker
卫生纸不够用3 小时前
子Shell及Shell嵌套模式
linux·bash