[C++]使用纯opencv部署yolov11目标检测onnx模型

yolov11官方框架:https://github.com/ultralytics/ultralytics

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

以下是一个大致的步骤指南,用于在C++中使用OpenCV部署YOLOv11(假设你已经有了YOLOv11的ONNX模型):

  1. 安装依赖
    • 确保你的开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。
  2. 准备模型
    • 将YOLOv11模型从PyTorch转换为ONNX格式。这通常涉及使用PyTorch的torch.onnx.export函数。
    • 确保你有YOLOv11的ONNX模型文件、配置文件(描述模型架构)和类别名称文件。
  3. 编写C++代码
    • 使用OpenCV的DNN模块加载ONNX模型。
    • 预处理输入图像(如调整大小、归一化等),以符合模型的输入要求。
    • 将预处理后的图像输入到模型中,并获取检测结果。
    • 对检测结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制边界框。
  4. 编译和运行
    • 使用C++编译器(如g++)编译你的代码。
    • 运行编译后的程序,输入图像或视频,并观察目标检测结果。

需要注意的是,由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息(如特征图、置信度、边界框坐标等),因此你需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11的特性(如自定义层、特定的激活函数等)可能无法在OpenCV中直接实现。在这种情况下,你可能需要寻找替代方案,如使用其他深度学习库(如TensorRT、ONNX Runtime等)来加载和运行模型,并通过C++接口与这些库进行交互。

总之,在C++中使用纯OpenCV部署YOLOv11是一项具有挑战性的任务,需要深入理解YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式。如果你不熟悉这些领域,可能需要花费更多的时间和精力来学习和解决问题。

【效果展示】

【测试环境】

vs2019

cmake==3.24.3

opencv==4.8.0

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>

#include<math.h>
#include "yolov11.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.

using namespace std;
using namespace cv;
using namespace dnn;

template<typename _Tp>
int yolov11(_Tp& cls,Mat& img,string& model_path)
{

	Net net;
	if (cls.ReadModel(net, model_path, false)) {
		cout << "read net ok!" << endl;
	}
	else {
		return -1;
	}
	//生成随机颜色
	vector<Scalar> color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(Scalar(b, g, r));
	}
	vector<OutputSeg> result;


	if (cls.Detect(img, net, result)) {
		DrawPred(img, result, cls._className, color);
	}
	else {
		cout << "Detect Failed!" << endl;
	}
	system("pause");
	return 0;
}




template<typename _Tp>
int video_demo(_Tp& cls, string& model_path)
{
	vector<Scalar> color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(Scalar(b, g, r));
	}
	vector<OutputSeg> result;
	cv::VideoCapture cap("D:\\car.mp4");
	if (!cap.isOpened())
	{
		std::cout << "open capture failured!" << std::endl;
		return -1;
	}
	Mat frame;
#ifdef VIDEO_OPENCV
	Net net;
	if (cls.ReadModel(net, model_path, true)) {
		cout << "read net ok!" << endl;
	}
	else {
		cout << "read net failured!" << endl;
		return -1;
	}

#else
	if (cls.ReadModel(model_path, true)) {
		cout << "read net ok!" << endl;
	}
	else {
		cout << "read net failured!" << endl;
		return -1;
	}

#endif

	while (true)
	{

		cap.read(frame);
		if (frame.empty())
		{
			std::cout << "read to end" << std::endl;
			break;
		}
		result.clear();
#ifdef VIDEO_OPENCV

		if (cls.Detect(frame, net, result)) {
			DrawPred(frame, result, cls._className, color, true);
		}
#else
		if (cls.OnnxDetect(frame, result)) {
			DrawPred(frame, result, cls._className, color, true);
		}
#endif
		int k = waitKey(10);
		if (k == 27) { //esc 
			break;
		}

	}
	cap.release();

	system("pause");

	return 0;
}


int main() {

	string detect_model_path = "./yolo11n.onnx";
	Yolov11 detector;
	video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11目标检测onnx模型演示源码+模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多实现细节和源码下载参考博文https://blog.csdn.net/FL1623863129/article/details/142688868, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,将yolov5-6.2封装成一个类几行代码完成语义分割任务,C++使用纯opencv去部署yolov8官方obb旋转框检测,使用C#的winform部署yolov8的onnx实例分割模型,超变态的AI换脸工具,解除限制!解锁高级功能!,YOLOv8检测界面-PyQt5实现,基于onnx模型加密与解密深度学习模型保护方法介绍,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用易语言调用opencv进行视频和摄像头每一帧处理,使用纯opencv部署yolov5目标检测模型onnxhttps://www.bilibili.com/video/BV1Nc4LekE1d/

【源码下载】

https://download.csdn.net/download/FL1623863129/89837170

相关推荐
old_power18 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
通信.萌新26 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
涛ing34 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
攻城狮7号3 小时前
【10.2】队列-设计循环队列
数据结构·c++·算法
_DCG_4 小时前
c++常见设计模式之装饰器模式
c++·设计模式·装饰器模式
w(゚Д゚)w吓洗宝宝了4 小时前
设计模式概述 - 设计模式的重要性
c++·设计模式
7yewh4 小时前
嵌入式知识点总结 C/C++ 专题提升(七)-位操作
c语言·c++·stm32·单片机·mcu·物联网·位操作
红色的山茶花4 小时前
YOLOv10-1.1部分代码阅读笔记-predictor.py
笔记·深度学习·yolo
w(゚Д゚)w吓洗宝宝了4 小时前
装饰器模式 - 装饰器模式的实现
开发语言·c++·算法