LLM | Xinference 安装使用(支持CPU、Metal、CUDA推理和分布式部署)

1. 详细步骤

1.1 安装

bash 复制代码
# CUDA/CPU
pip install "xinference[transformers]"
pip install "xinference[vllm]"
pip install "xinference[sglang]"

# Metal(MPS)
pip install "xinference[mlx]"
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

注:可能是 nvcc 版本等个人环境配置原因,llama-cpp-python 在 CUDA 上无法使用(C/C++ 环境上是正常的),Metal 的 llama-cpp-python 正常。如需安装 flashinfer 等依赖见官方安装文档:https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html

1.2 启动

1.2.1 直接启动

简洁命令
bash 复制代码
xinference-local --host 0.0.0.0 --port 9997
多参数命令

设置模型缓存路径模型来源(Hugging Face/Modelscope)

bash 复制代码
# CUDA/CPU
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port 9997

# Metal(MPS)
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope PYTORCH_ENABLE_MPS_FALLBACK=1 xinference-local --host 0.0.0.0 --port 9997

1.2.2 集群部署

通过 ifconfig 查看当前服务器IP

1.2.2.1 主服务器启动 Supervisor
bash 复制代码
# 格式
xinference-supervisor -H 当前服务器IP(主服务器IP) --port 9997

# 示例
xinference-supervisor -H 192.168.31.100 --port 9997
1.2.2.2 其他服务器启动 Worker
bash 复制代码
# 格式
xinference-worker -e "http://${主服务器IP}:9997" -H 当前服务器IP(子服务器IP)

# 示例
xinference-worker -e "http://192.168.31.100:9997" -H 192.168.31.101

注:按需添加XINFERENCE_HOMEXINFERENCE_MODEL_SRCPYTORCH_ENABLE_MPS_FALLBACK等环境变量(启动时参数)

1.3 使用

访问 http://主服务器IP:9997/docs 查看接口文档,访问 http://主服务器IP:9997 正常使用

2. 参考资料

2.1 Xinference

2.1.1 部署文档
本地运行 Xinference

https://inference.readthedocs.io/zh-cn/latest/getting_started/using_xinference.html#run-xinference-locally

集群中部署 Xinference

https://inference.readthedocs.io/zh-cn/latest/getting_started/using_xinference.html#deploy-xinference-in-a-cluster

2.1.2 安装文档
官方页面

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html

Transformers 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#transformers-backend

vLLM 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#vllm-backend

Llama.cpp 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#llama-cpp-backend

MLX 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#mlx-backend

3. 资源

3.1 Xinference

3.1.1 GitHub
官方页面

https://github.com/xorbitsai/inference

https://github.com/xorbitsai/inference/blob/main/README_zh_CN.md

3.1.2 安装文档
SGLang 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#sglang-backend

其他平台(在昇腾 NPU 上安装)

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#other-platforms

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation_npu.html#installation-npu

相关推荐
冻感糕人~37 分钟前
大模型研究报告 | 2024年中国金融大模型产业发展洞察报告|附34页PDF文件下载
人工智能·程序人生·金融·llm·大语言模型·ai大模型·大模型研究报告
python_知世4 小时前
2024年中国金融大模型产业发展洞察报告(附完整PDF下载)
人工智能·自然语言处理·金融·llm·计算机技术·大模型微调·大模型研究报告
火山引擎边缘云10 小时前
创新实践:基于边缘智能+扣子的智能轮椅 AIoT 解决方案
人工智能·llm·边缘计算
Baihai_IDP17 小时前
「混合专家模型」可视化指南:A Visual Guide to MoE
人工智能·llm·aigc
Just Jump1 天前
大语言模型LLM综述
llm·大语言模型
数据智能老司机1 天前
LLM工程师手册——RAG 推理管道
人工智能·llm·aiops
ApiHug2 天前
ApiSmart-QWen2.5 coder vs GPT-4o 那个更强? ApiSmart 测评
java·人工智能·ai·llm·通义千问·apihug·apismart
Hamm2 天前
先别急着喷,没好用的iOS-Ollama客户端那就自己写个然后开源吧
人工智能·llm·swift
数据智能老司机2 天前
机器学习生产系统——可解释性
人工智能·机器学习·llm
SpikeKing3 天前
LLM - 使用 LLaMA-Factory 微调大模型 Qwen2-VL SFT(LoRA) 图像数据集 教程 (2)
人工智能·lora·llm·sft·多模态大模型·llama-factory·qwen2-vl