LLM | Xinference 安装使用(支持CPU、Metal、CUDA推理和分布式部署)

1. 详细步骤

1.1 安装

bash 复制代码
# CUDA/CPU
pip install "xinference[transformers]"
pip install "xinference[vllm]"
pip install "xinference[sglang]"

# Metal(MPS)
pip install "xinference[mlx]"
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

注:可能是 nvcc 版本等个人环境配置原因,llama-cpp-python 在 CUDA 上无法使用(C/C++ 环境上是正常的),Metal 的 llama-cpp-python 正常。如需安装 flashinfer 等依赖见官方安装文档:https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html

1.2 启动

1.2.1 直接启动

简洁命令
bash 复制代码
xinference-local --host 0.0.0.0 --port 9997
多参数命令

设置模型缓存路径模型来源(Hugging Face/Modelscope)

bash 复制代码
# CUDA/CPU
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port 9997

# Metal(MPS)
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope PYTORCH_ENABLE_MPS_FALLBACK=1 xinference-local --host 0.0.0.0 --port 9997

1.2.2 集群部署

通过 ifconfig 查看当前服务器IP

1.2.2.1 主服务器启动 Supervisor
bash 复制代码
# 格式
xinference-supervisor -H 当前服务器IP(主服务器IP) --port 9997

# 示例
xinference-supervisor -H 192.168.31.100 --port 9997
1.2.2.2 其他服务器启动 Worker
bash 复制代码
# 格式
xinference-worker -e "http://${主服务器IP}:9997" -H 当前服务器IP(子服务器IP)

# 示例
xinference-worker -e "http://192.168.31.100:9997" -H 192.168.31.101

注:按需添加XINFERENCE_HOMEXINFERENCE_MODEL_SRCPYTORCH_ENABLE_MPS_FALLBACK等环境变量(启动时参数)

1.3 使用

访问 http://主服务器IP:9997/docs 查看接口文档,访问 http://主服务器IP:9997 正常使用

2. 参考资料

2.1 Xinference

2.1.1 部署文档
本地运行 Xinference

https://inference.readthedocs.io/zh-cn/latest/getting_started/using_xinference.html#run-xinference-locally

集群中部署 Xinference

https://inference.readthedocs.io/zh-cn/latest/getting_started/using_xinference.html#deploy-xinference-in-a-cluster

2.1.2 安装文档
官方页面

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html

Transformers 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#transformers-backend

vLLM 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#vllm-backend

Llama.cpp 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#llama-cpp-backend

MLX 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#mlx-backend

3. 资源

3.1 Xinference

3.1.1 GitHub
官方页面

https://github.com/xorbitsai/inference

https://github.com/xorbitsai/inference/blob/main/README_zh_CN.md

3.1.2 安装文档
SGLang 引擎

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#sglang-backend

其他平台(在昇腾 NPU 上安装)

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html#other-platforms

https://inference.readthedocs.io/zh-cn/latest/getting_started/installation_npu.html#installation-npu

相关推荐
栀秋6661 小时前
从零开始调用大模型:使用 OpenAI SDK 实现歌词生成,手把手实战指南
前端·llm·openai
夏日白云3 小时前
《PDF解析工程实录》第 12 章|别让模型贴着墙走:为什么加一圈空白,效果反而更好?
图像处理·机器学习·pdf·llm·大语言模型·rag·文档解析
CoderJia程序员甲7 小时前
GitHub 热榜项目 - 日榜(2025-12-31)
开源·大模型·llm·github·ai教程
冬奇Lab7 小时前
【Cursor进阶实战·03】四大模式完全指南:Agent/Plan/Debug/Ask的正确打开方式
llm·ai编程·cursor
Mintopia10 小时前
⚙️ AI冲击下的职场新物种:超级个体
人工智能·llm·aigc
爱听歌的周童鞋11 小时前
斯坦福大学 | CS336 | 从零开始构建语言模型 | Spring 2025 | 笔记 | Lecture 17: Alignment - RL 2
llm·policy gradient·grpo·cs336·baselines·advantage funcs
牛奶咖啡.8541 天前
基于Llama-Factory/Qwen2.5-1.5b自定义数据集LoRA微调实战【PPO/RLHF/训练/评估】
语言模型·llm·llama·rl·ppo
人工干智能1 天前
LLM大模型的付费管理流程(以OpenAI 为例)
llm
智泊AI1 天前
大语言模型之AI Agent:Multi-Agent架构
llm
Mintopia1 天前
量子计算会彻底改变 AI 的运算方式吗?一场关于"量子幽灵"与"硅基大脑"的深夜对话 🎭💻
人工智能·llm·aigc