【大数据入门 | Hive】Join语句

1. 等值join

Hive支持通常的sql join语句,但是只支持等值连接,不支持非等值连接。但sql是支持非等值连接的。

1) 案例实操

(1)根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门名称。

sql 复制代码
hive (default)> 
select 
    e.empno, 
    e.ename, 
    d.dname 
from emp e 
join dept d 
on e.deptno = d.deptno;

2. 内连接

内连接:只有进行连接的两个表中都存在与连接条件相匹配的数据才会被保留下来。

sql 复制代码
hive (default)> 
select 
    e.empno, 
    e.ename, 
    d.deptno 
from emp e 
join dept d 
on e.deptno = d.deptno;

3. 左外连接

左外连接:join操作符左边表中符合where子句的所有记录将会被返回。

sql 复制代码
hive (default)> 
select 
    e.empno, 
    e.ename, 
    d.deptno 
from emp e 
left join dept d 
on e.deptno = d.deptno;

4. 右外连接

右外连接:join操作符右边表中符合where子句的所有记录将会被返回。

sql 复制代码
hive (default)> 
select 
    e.empno, 
    e.ename, 
    d.deptno 
from emp e 
right join dept d 
on e.deptno = d.deptno;

5. 满外连接

满外连接:将会返回所有表中符合where语句条件的所有记录。如果任一表的指定字段没有符合条件的值的话,那么就使用null值替代。

sql 复制代码
hive (default)> 
select 
    e.empno, 
    e.ename, 
    d.deptno 
from emp e 
full join dept d 
on e.deptno = d.deptno;

6. 多表连接

注意:连接n个表,至少需要n-1个连接条件。例如:连接三个表,至少需要两个连接条件。

数据准备,在/opt/module/hive/datas/下:vim location.txt

部门位置id 部门位置

sql 复制代码
[atguigu@hadoop102 datas]$ vim location.txt

1700	北京
1800	上海
1900	深圳

1 创建位置表

sql 复制代码
hive (default)>
create table if not exists location(
    loc int,           -- 部门位置id
    loc_name string   -- 部门位置
)
row format delimited fields terminated by '\t';

2 导入数据

sql 复制代码
hive (default)> load data local inpath '/opt/module/hive/datas/location.txt' into table location;

3 多表连接查询

sql 复制代码
hive (default)> 
select 
    e.ename, 
    d.dname, 
    l.loc_name
from emp e 
join dept d
on d.deptno = e.deptno 
join location l
on d.loc = l.loc;

大多数情况下,Hive会对每对join连接对象启动一个MapReduce任务。本例中会首先启动一个MapReduce job对表e和表d进行连接操作,然后会再启动一个MapReduce job将第一个MapReduce job的输出和表l进行连接操作。

7. 笛卡尔积

1 笛卡尔集会在下面条件下产生

(1)省略连接条件

(2)连接条件无效

(3)所有表中的所有行互相连接

2 )案例实操

sql 复制代码
hive (default)> 
select 
    empno, 
    dname 
from emp, dept;

8. 联合(union / union all)

1 )union&union all上下拼接

union和union all都是上下拼接sql的结果,这点是和join有区别的,join是左右关联,union和union all是上下拼接。union去重,union all不去重。

union和union all在上下拼接sql结果时有两个要求:

(1)两个sql的结果,列的个数必须相同

(2)两个sql的结果,上下所对应列的类型必须一致

2 案例实操

sql 复制代码
hive (default)> 
select 
    *
from emp
where deptno=30
union
select 
    *
from emp
where deptno=40;
相关推荐
Lx3523 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
Lx3521 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
IT毕设梦工厂1 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB2 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐2 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
IT学长编程2 天前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
Lx3522 天前
Hadoop数据一致性保障:处理分布式系统常见问题
大数据·hadoop
IT学长编程2 天前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析
Dobby_052 天前
【Hadoop】Yarn:Hadoop 生态的资源操作系统
大数据·hadoop·分布式·yarn