pytorch张量基础

好的,为了编写一篇全面且详细的指南,涵盖 PyTorch 中张量的所有知识,并为学习机器学习和深度学习打好基础,我将会提供一个结构化的内容,包括基础知识、进阶知识、实际应用和一些优化技巧。这个文档大纲如下:

  1. 引言
  2. 张量的基础知识
    1. 张量的概念
    2. 张量的属性
    3. 张量的创建
  3. 张量的操作
    1. 基本运算
    2. 索引和切片
    3. 形状变换
  4. 自动微分
    1. 基本概念
    2. 停止梯度传播
  5. 张量的设备管理
    1. 检查和移动张量
    2. CUDA 张量
  6. 高级操作
    1. 张量的视图
    2. 广播机制
    3. 分块和拼接
    4. 张量的复制
  7. 内存优化和管理
    1. 稀疏张量
    2. 内存释放
  8. 应用实例
    1. 线性回归
    2. 神经网络基础
  9. 总结

1. 引言

在机器学习和深度学习中,张量(Tensor)是核心的数据结构。了解和掌握张量的操作是学习 PyTorch 和构建神经网络模型的必要基础。张量可以表示从标量到高维数组的数据结构,它在 PyTorch 的计算图中扮演着基础角色。本指南旨在全面介绍 PyTorch 中张量的相关知识,帮助读者从基础打好深度学习的基础。

2. 张量的基础知识

1. 张量的概念

张量是一个数组的通用化,可以表示标量(0维)、向量(1维)、矩阵(2维)及更高维的数组。通俗来说,张量是一种多维数据结构,其本质上是一个多维数组。

2. 张量的属性

张量有多个重要属性,用来描述其数据和结构:

  • 形状(shape) :描述张量的维度结构,例如 (2, 3) 表示一个包含 2 行 3 列的矩阵。
  • 数据类型(dtype) :指定张量中元素的类型,例如 torch.float32, torch.int64 等。
  • 设备(device):指示张量存储的设备,可以是 CPU 或 GPU。
  • 步幅(stride):步幅表示连续两个元素在各个维度上的步进距离。
python 复制代码
import torch

tensor = torch.tensor([[1., 2., 3.], [4., 5., 6.]])

print(tensor.shape)    # torch.Size([2, 3])
print(tensor.dtype)    # torch.float32
print(tensor.device)   # cpu
print(tensor.stride()) # (3, 1)
3. 张量的创建

可以通过多种方式创建张量,包括从已有数据创建、使用随机数生成和从其他张量创建。

python 复制代码
# 从数据创建
scalar = torch.tensor(5.0)          # 标量
vector = torch.tensor([1.0, 2.0, 3.0])  # 向量
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])  # 矩阵

# 使用随机数创建
rand_tensor = torch.rand(2, 3)     # 均匀分布
randn_tensor = torch.randn(2, 3)   # 标准正态分布

# 从其他张量创建
zeros_tensor = torch.zeros_like(matrix)  # 创建与 matrix 形状相同的全零张量

3. 张量的操作

1. 基本运算

张量支持基本的算术运算,包括加、减、乘、除。

python 复制代码
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])

# 加法
c = a + b

# 减法
d = a - b

# 乘法
e = a * b

# 除法
f = a / b

# 点积
dot_prod = torch.dot(a, b)  # 32.0

# 矩阵乘法
matrix1 = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
matrix2 = torch.tensor([[5.0, 6.0], [7.0, 8.0]])
matrix_mul = torch.mm(matrix1, matrix2)  # [[19.0, 22.0], [43.0, 50.0]]
2. 索引和切片

张量支持多种索引和切片操作,类似于 NumPy。

python 复制代码
tensor = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

# 索引
element = tensor[1, 2]  # 6.0

# 切片
subset = tensor[:, 1]  # tensor([2.0, 5.0])
3. 形状变换

在不复制数据的情况下,PyTorch 支持多种形状变换操作。

python 复制代码
# 重塑
reshaped = tensor.view(3, 2)  # tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# 转置
transposed = tensor.t()       # tensor([[1.0, 4.0], [2.0, 5.0], [3.0, 6.0]])

# 增加或减少维度
unsqueezed = tensor.unsqueeze(0)  # 增加第0维
squeezed = tensor.squeeze()       # 去除所有维度为1的维度

4. 自动微分

PyTorch 提供强大的自动微分功能,称为Autograd。它可以自动计算张量的梯度,适用于优化和训练神经网络。

1. 基本概念

张量可以设置 requires_grad=True 以启用自动微分。计算张量的梯度使用 backward() 方法。

python 复制代码
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x[0] ** 2 + x[1] ** 3
y.backward()
print(x.grad)  # tensor([ 4.0, 27.0])
2. 停止梯度传播

在某些情况下,比如模型评估或推理时,需要停止梯度传播以提高性能并节省内存。

python 复制代码
with torch.no_grad():
    y = x[0] ** 2 + x[1] ** 3

# 使用 detach() 方法创建一个新的张量,该张量与原始张量共享数据,但不进行梯度追踪
detached_tensor = x.detach()

5. 张量的设备管理

1. 检查和移动张量

张量可以在 CPU 或 GPU 上进行计算。PyTorch 提供了简单的方法来检查和移动张量到不同的设备。

python 复制代码
tensor = torch.tensor([1.0, 2.0, 3.0])

# 检查是否有可用的 GPU
if torch.cuda.is_available():
    tensor = tensor.to('cuda')
    print(tensor.device)  # cuda:0
    
# 将张量移动回 CPU
tensor = tensor.to('cpu')
print(tensor.device)  # cpu
2. CUDA 张量

使用 CUDA 张量可以显著提高计算速度,特别是在深度学习中。

python 复制代码
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)

6. 高级操作

1. 张量的视图

视图允许我们在不复制数据的情况下,改变张量的形状。

python 复制代码
original_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
view_tensor = original_tensor.view(6)  # tensor([1, 2, 3, 4, 5, 6])

# 修改视图
view_tensor[0] = 10
print(original_tensor)  # tensor([[10,  2,  3], [ 4,  5,  6]])
2. 广播机制

广播机制使得不同形状的张量能够进行相同大小的运算。

python 复制代码
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
result = a + b
# result: tensor([[2, 3, 4],
#                 [3, 4, 5],
#                 [4, 5, 6]])
3. 分块和拼接

可以使用 split()cat() 等函数进行分块和拼接。

python 复制代码
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 分割张量
split_tensors = torch.split(tensor, split_size_or_sections=2, dim=1)

# 拼接张量
tensor_a = torch.tensor([[1, 2], [3, 4]])
tensor_b = torch.tensor([[5, 6], [7, 8]])
concat_tensor = torch.cat((tensor_a, tensor_b), dim=1)
4. 张量的复制

用于创建独立副本,clone()detach() 是常用方法。

python 复制代码
tensor = torch.tensor([1, 2, 3], requires_grad=True)
cloned_tensor = tensor.clone()
detached_tensor = tensor.detach()

7. 内存优化和管理

1. 稀疏张量

对于稀疏矩阵和张量,PyTorch 提供了稀疏张量表示,以便节省内存和计算资源。

python 复制代码
indices = torch.tensor([[0, 1, 1], [2, 0, 2]])
values = torch.tensor([3, 4, 5], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, [2, 3])
print(sparse_tensor)
2. 内存释放

为了在训练和评估期间节省内存,可以释放不再需要的张量。

python 复制代码
# 使用 del 语句手动删除对象
del tensor

# 清空 GPU 切实可行的张量以释放内存
torch.cuda.empty_cache()

8. 应用实例

通过实际应用实例,可以更好地理解和掌握 PyTorch 张量的使用方式。

1. 线性回归

利用 PyTorch 张量实现简单的线性回归模型。

python 复制代码
# 数据集
x_train = torch.tensor([[1.0], [2.0], [3.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0]])

# 初始化参数
w = torch.randn(1, requires_grad=True)
b = torch.randn(1, requires_grad=True)

def model(x):
    return w * x + b

# 损失函数
def loss_fn(y_pred, y):
    return ((y_pred - y) ** 2).mean()

# 训练模型
learning_rate = 0.01
for epoch in range(1000):
    y_pred = model(x_train)
    loss = loss_fn(y_pred, y_train)
    loss.backward()
    
    with torch.no_grad():
        w -= learning_rate * w.grad
        b -= learning_rate * b.grad
        w.grad.zero_()
        b.grad.zero_()

print(f'w: {w}, b: {b}')
2. 神经网络基础

张量在神经网络中的应用,是构建复杂模型的基础。

python 复制代码
import torch.nn as nn

# 简单的神经网络
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(1, 10)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 1)
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

model = SimpleNN()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 训练模型
for epoch in range(1000):
    y_pred = model(x_train)
    loss = criterion(y_pred, y_train)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print(list(model.parameters()))
相关推荐
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
orion-orion6 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
余炜yw7 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
weixin_307779138 小时前
PyTorch基本功能与实现代码
人工智能·pytorch
赛丽曼8 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
weixin_307779138 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
yuanbenshidiaos10 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
汤姆和佩琦10 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
热爱编程的OP11 小时前
机器学习 vs 深度学习
人工智能·深度学习·机器学习
清图12 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画