深度学习----------------------------编码器、解码器架构

目录

重新考察CNN

编码器:将输入编码成中间表达形式(特征)

解码器:将中间表示解码成输出。


重新考察RNN

编码器:将文本 表示成向量

解码器:向量 表示成输出


编码器-解码器架构

一个模块被分为两块

编码器处理输出
解码器生成输出


总结

使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出。


编码器=解码器架构

编码器

python 复制代码
# 编码器
from torch import nn


class Encoder(nn.Module):
    """编码器-解码器结构的基本编码器接口"""

    #  Encoder 类的构造函数,它接受任意数量的关键字参数
    def __init__(self, **kwargs):
        # 调用了父类 nn.Module 的构造函数,确保正确初始化
        super(Encoder, self).__init__(**kwargs)

    # 给一个X,输出其状态

    def forward(self, X, *args):
        # 抛出一个 NotImplementedError 异常,表示该方法需要在子类中进行实现。
        raise NotImplementedError

解码器

python 复制代码
# 解码器
class Decoder(nn.Module):
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    # 有一个中介状态,编码器的东西传给解码器,拿到编码器的输出enc_outputs,然后初始化状态。

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    # 拿到额外的输出X, state是用来不断更新的

    def forward(self, X, state):
        raise NotImplementedError

合并编码器和解码器

python 复制代码
# 编码器
from torch import nn


# 合并编码器和解码器
class EncoderDecoder(nn.Module):
    """编码器-解码器结构的基类"""

    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        # 使用编码器对输入进行编码
        enc_outputs = self.encoder(enc_X, *args)
        # 使用编码器的输出初始化解码器的状态
        dec_state = self.decoder.init_state(enc_outputs, *args)
        # 使用解码器进行解码
        return self.decoder(dec_X, dec_state)

相关推荐
yumgpkpm几秒前
(简略)AI 大模型 手机的“简单替换陷阱”与Hadoop、Cloudera CDP 7大数据底座的关系探析
人工智能·hive·zookeeper·flink·spark·kafka·开源
会编程的吕洞宾2 分钟前
智能体学习记录一
人工智能·学习
Robert--cao3 分钟前
人机交互(如 VR 手柄追踪、光标移动、手势识别)的滤波算法
人工智能·算法·人机交互·vr·滤波器
Z3r4y3 分钟前
【AI】2025 0x401新生交流赛 wp
人工智能·ai·ctf·wp
智驱力人工智能4 分钟前
高速公路无人机车流密度监测 构建动态交通新维度 基于YOLOv8的无人机车辆检测算法 边缘计算无人机交通监测设备
人工智能·安全·yolo·目标检测·视觉检测·无人机·边缘计算
Katecat996635 分钟前
基于YOLOv8-Slimneck-WFU模型的苹果目标检测实现
人工智能·yolo·目标检测
Piar1231sdafa5 分钟前
FCOS模型优化实战:基于R50-DCN-Caffe的FPN_GN检测头中心点回归与GIoU损失函数实现
人工智能·回归·caffe
世岩清上5 分钟前
智能算法与边缘计算融合:驱动下一代实时决策系统的技术范式革新
人工智能·边缘计算
YIFAN.WANG9 分钟前
AI中的优化7-有约束非线性规划
人工智能·机器学习·支持向量机
咚咚王者2 小时前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习