深度学习----------------------------编码器、解码器架构

目录

重新考察CNN

编码器:将输入编码成中间表达形式(特征)

解码器:将中间表示解码成输出。


重新考察RNN

编码器:将文本 表示成向量

解码器:向量 表示成输出


编码器-解码器架构

一个模块被分为两块

编码器处理输出
解码器生成输出


总结

使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出。


编码器=解码器架构

编码器

python 复制代码
# 编码器
from torch import nn


class Encoder(nn.Module):
    """编码器-解码器结构的基本编码器接口"""

    #  Encoder 类的构造函数,它接受任意数量的关键字参数
    def __init__(self, **kwargs):
        # 调用了父类 nn.Module 的构造函数,确保正确初始化
        super(Encoder, self).__init__(**kwargs)

    # 给一个X,输出其状态

    def forward(self, X, *args):
        # 抛出一个 NotImplementedError 异常,表示该方法需要在子类中进行实现。
        raise NotImplementedError

解码器

python 复制代码
# 解码器
class Decoder(nn.Module):
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    # 有一个中介状态,编码器的东西传给解码器,拿到编码器的输出enc_outputs,然后初始化状态。

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    # 拿到额外的输出X, state是用来不断更新的

    def forward(self, X, state):
        raise NotImplementedError

合并编码器和解码器

python 复制代码
# 编码器
from torch import nn


# 合并编码器和解码器
class EncoderDecoder(nn.Module):
    """编码器-解码器结构的基类"""

    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        # 使用编码器对输入进行编码
        enc_outputs = self.encoder(enc_X, *args)
        # 使用编码器的输出初始化解码器的状态
        dec_state = self.decoder.init_state(enc_outputs, *args)
        # 使用解码器进行解码
        return self.decoder(dec_X, dec_state)

相关推荐
智慧地球(AI·Earth)9 分钟前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
GISer_Jing13 分钟前
AI:多智能体协作与记忆管理
人工智能·设计模式·aigc
qq_4112624218 分钟前
纯图像传感器(只出像素),还是 Himax WiseEye/WE1/WE-I Plus 这类带处理器、能在端侧跑模型并输出“metadata”的模块
人工智能·嵌入式硬件·esp32·四博智联
InfiSight智睿视界28 分钟前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Toky丶35 分钟前
【文献阅读】BitNet Distillation
人工智能
LaughingZhu37 分钟前
Product Hunt 每日热榜 | 2026-01-09
人工智能·经验分享·神经网络·搜索引擎·产品运营
莫非王土也非王臣1 小时前
卷积神经网络与应用
人工智能·神经网络·cnn
Yeats_Liao1 小时前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
Hi202402171 小时前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶
Blossom.1181 小时前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer