AMD发布首个AI小语言模型:6900亿token、推测解码提速3.88倍

AMD发布了自己的首个小语言模型(SLM),名为"AMD-135M"。相比于越来越庞大的大语言模型(LLM),它体积小巧,更加灵活,更有针对性,非常适合私密性、专业性很强的企业部署。

AMD-135小模型隶属于Llama家族,有两个版本:

一是基础型"AMD-Llama-135M",拥有多达6700亿个token,在八块Instinct MIM250 64GB加速器上训练了六天。

二是延伸型"AMD-Llama-135M-code",额外增加了专门针对编程的200亿个token,同样硬件训练了四天。

创建与部署流程

它使用了一种名为"推测解码"(speculative decoding)的方法,通过较小的草稿模型,在单次前向传播中生成多个候选token,然后发送给更大的、更精确的目标模型,进行验证或纠正。

这种方法可以同时生成多个token,不会影响性能,还可以降低内存占用,但因为数据交易更多,功耗也会增加。

AMD还使用AMD-Llama-135M-code作为CodeLlama-7b的草案模型,测试了推测解码使用与否的性能。

比如在MI250加速器上,性能可提升最多约2.8倍,锐龙AI CPU上可提升最多约3.88倍,锐龙AI NPU上可提升最多约2.98倍。

推测解码

AMD-135M小模型的训练代码、数据集等资源都已经开源,遵循Apache 2.0。

按照AMD的说法,它的性能与其他开源小模型基本相当或略有领先,比如Hellaswag、SciQ、ARC-Easy等任务超过Llama-68M、LLama-160M,Hellaswag、WinoGrande、SciQ、MMLU、ARC-Easy等任务则基本类似GTP2-124MN、OPT-125M。


感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。期望未来能为大家带来更多有价值的内容,请多多关注我的动态!

相关推荐
Mintopia3 分钟前
🖥️ 老旧设备适配 AIGC:Web 前端兼容性技术解决方案
人工智能·aigc·trae
泰迪智能科技015 分钟前
数据挖掘平台建设案例分享——长春大学
人工智能·数据挖掘
aneasystone本尊20 分钟前
学习 LiteLLM 的用户管理体系
人工智能
老蒋新思维35 分钟前
创客匠人 2025 高峰论谈(11.22-25):AI 智能体重构创始人 IP 打造与知识变现的管理逻辑
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
嵌入式-老费38 分钟前
自己动手写深度学习框架(pytorch转ncnn)
人工智能·pytorch·深度学习
咚咚王者1 小时前
人工智能之数据分析 numpy:第八章 数组广播
人工智能·数据分析·numpy
工业机器视觉设计和实现1 小时前
我的第一个cudnn(cuda)人工智能程序(lenet)
人工智能
我叫侯小科1 小时前
PyTorch 实战:手写数字识别(MNIST)从入门到精通
人工智能·pytorch·python
Sirius Wu1 小时前
开源训练框架:MS-SWIFT详解
开发语言·人工智能·语言模型·开源·aigc·swift
Baihai_IDP1 小时前
当前的“LLM 智能”,是来自模型突破,还是工程堆砌?
人工智能·llm·aigc