AMD发布首个AI小语言模型:6900亿token、推测解码提速3.88倍

AMD发布了自己的首个小语言模型(SLM),名为"AMD-135M"。相比于越来越庞大的大语言模型(LLM),它体积小巧,更加灵活,更有针对性,非常适合私密性、专业性很强的企业部署。

AMD-135小模型隶属于Llama家族,有两个版本:

一是基础型"AMD-Llama-135M",拥有多达6700亿个token,在八块Instinct MIM250 64GB加速器上训练了六天。

二是延伸型"AMD-Llama-135M-code",额外增加了专门针对编程的200亿个token,同样硬件训练了四天。

创建与部署流程

它使用了一种名为"推测解码"(speculative decoding)的方法,通过较小的草稿模型,在单次前向传播中生成多个候选token,然后发送给更大的、更精确的目标模型,进行验证或纠正。

这种方法可以同时生成多个token,不会影响性能,还可以降低内存占用,但因为数据交易更多,功耗也会增加。

AMD还使用AMD-Llama-135M-code作为CodeLlama-7b的草案模型,测试了推测解码使用与否的性能。

比如在MI250加速器上,性能可提升最多约2.8倍,锐龙AI CPU上可提升最多约3.88倍,锐龙AI NPU上可提升最多约2.98倍。

推测解码

AMD-135M小模型的训练代码、数据集等资源都已经开源,遵循Apache 2.0。

按照AMD的说法,它的性能与其他开源小模型基本相当或略有领先,比如Hellaswag、SciQ、ARC-Easy等任务超过Llama-68M、LLama-160M,Hellaswag、WinoGrande、SciQ、MMLU、ARC-Easy等任务则基本类似GTP2-124MN、OPT-125M。


感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。期望未来能为大家带来更多有价值的内容,请多多关注我的动态!

相关推荐
wwlsm_zql1 分钟前
百度文心大模型再攀高峰:飞桨赋能AI,深度学习实力见证
人工智能·百度·paddlepaddle
王者鳜錸10 分钟前
基于Selenium和AI的图像处理
图像处理·人工智能·selenium
song1502653729812 分钟前
全检垫圈垫片 视觉检测设备 在线自动化瑕疵检测机
人工智能·自动化·视觉检测
song1502653729818 分钟前
铜鼻子冷压端子视觉检测机 尺寸外观瑕疵自动化检测设备
人工智能·自动化·视觉检测
wzx_Eleven22 分钟前
【论文阅读】AAAI 2025 | 面向精确分割式联邦学习的多模型聚合与知识重放
论文阅读·人工智能·机器学习
Zack_Liu23 分钟前
LSS论文阅读
论文阅读·人工智能·目标跟踪
张较瘦_25 分钟前
[论文阅读] AI + Debug | 基于大语言模型的GitHub故障复现测试用例生成方法解析
论文阅读·人工智能·语言模型
Small___ming25 分钟前
【论文笔记】扩散模型——如何通俗理解传统概率模型的核心矛盾
论文阅读·人工智能·扩散模型·生成式人工智能
时序之心26 分钟前
时序论文速递:覆盖时间序列预测、分类、异常检测及交叉应用!(10.20-10.24)
人工智能·分类·数据挖掘·论文·时间序列
会笑的小熊28 分钟前
论文阅读笔记——数据增强
人工智能·计算机视觉