yjs11——pandas运算

1.算术运算

复制代码
加法:
data.(列名.)add(k)
data(.列) + k
减法:
data["W"].sub(k)

注意:
data["列名"]的效果=data.列名

2.逻辑运算

2.1直接比较型+满足条件赋值

2.2函数型:

3.统计运算

3.1整体统计函数

输出结果:

3.2统计函数

3.3累计函数+画图

4.自定义运算

代码:

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 7.DataFrame结构的运算

# 7.1算数运算
#   7.1.1加法运算
print("W值都加2的两种写法(一般不用方法2):")
print(data.W.add(2))
print(data.W + 2)

#   7.1.2减法运算
print("W的值都减3:")
print(data["W"].sub(3))
""" data["列名"]的效果=data.列名 """

print("```````````````````````````````````````````````````````````````````````````````````````````````````````")

# 7.2逻辑运算
#   7.2.1直接比较型+满足条件赋值
print("看那个W是大于50的:")
print(data.W > 50)
"返回的是把W单独拎出来,满足返回True,不满足返回False"

print(data[data.W > 50].head())
"""返回整个表中W>50的所有信息"""

print("将W>50并且PIE<18 的行 的所有信息 赋值成 xxx:")
# data[(data.W>50) & (data.PIE<18)]="xxx"
print(data)
"""1.如果有&或者|,各个条件要用括号括起来 如 (条件1)&(条件2)
   2.用的是&不是&&"""

print("`````````````````````````````````````````````````````````````````````")

#   7.2.2函数型
print("1.query函数------------------------输出PACE<90或者SALARY_MILLIONS>20的行的信息:")
print(data.query("PACE<90 | SALARY_MILLIONS>20"))
print("2.isin函数------------------------输出SALARY_MILLIONS=26.5或者30.96的行的信息:")
print(data[data.SALARY_MILLIONS.isin([26.5, 30.96])])
print(data.isin([54]))
"""1.data.query("条件1&条件2")可以搜寻的是范围,也可以搜寻指定的值,并且返回的是整个行的信息
   2.data.列名.isin(【value1,value2...】)是查找指定列值为value1,value2..的行,如果是这几个值,那么返回True,否返回False
   3.如果isin想返回符合条件的行的信息,可以 data【 data.列.isin([value1,value2...])】
   4.对于query函数的写法,query("整个条件都在一个引号中"),不是("条件1")&("条件2")
   5.isin()函数的value值要用中括号括起来
   
"""

print("============================================================================================================")

# 7.3统计运算
# 7.3.1统计函数
print("AGE中的最大值为{}".format(data["AGE"].max()))
print("AGE中的最大值所在的位置为{}".format(data["AGE"].idxmax(axis=0)))
print("AGE中的最小值所在的位置为{}".format(data["AGE"].idxmin(axis=0)))
print("AGE中的方差为{}".format(data["AGE"].var()))
print("AGE中的标准差为{}".format(data["AGE"].std()))
print("AGE的总和为{}".format(data["AGE"].sum()))
print("AGE中的平均值为{}".format(data["AGE"].mean()))

# 7.3.2整体的统计函数
print("整体的情况如下:")
print(data.describe())

# 7.3.3累计统计函数
print("DRPM列的累计加和为:")
print(data.DRPM.cumsum())
print("DRPM列的累计乘积为:")
print(data.DRPM.cumprod())
print("DRPM列的累计最大值为:")
print(data.DRPM.cummax())
print("DRPM列的累计最小值为:")
print(data.DRPM.cummin())

# 累计函数+画图
print(data_1.DRPM.cumsum())
data_1.DRPM.cumsum().plot(x=data.index)
plt.show()


# 8.自定义运算
def fun(x):
    x = data.DRPM.max() - data.DRPM.min()
    return x
k1 = data.apply(fun)

k2=data.apply(lambda x:data.DRPM-data.DRPM.min(),axis=1)
print(k1)
print(k2)
相关推荐
Zhen (Evan) Wang5 分钟前
(豆包)xgb.XGBRegressor 如何进行参数调优
开发语言·python
我爱一条柴ya9 分钟前
【AI大模型】线性回归:经典算法的深度解析与实战指南
人工智能·python·算法·ai·ai编程
Qiuner15 分钟前
【源力觉醒 创作者计划】开源、易用、强中文:文心一言4.5或是 普通人/非AI程序员 的第一款中文AI?
人工智能·百度·开源·文心一言·gitcode
未来之窗软件服务27 分钟前
chrome webdrive异常处理-session not created falled opening key——仙盟创梦IDE
前端·人工智能·chrome·仙盟创梦ide·东方仙盟·数据调式
赶紧去巡山35 分钟前
pyhton基础【23】面向对象进阶四
python
AI街潜水的八角43 分钟前
深度学习图像分类数据集—蘑菇识别分类
人工智能·深度学习·分类
旷世奇才李先生1 小时前
PyCharm 安装使用教程
ide·python·pycharm
飞睿科技1 小时前
乐鑫代理商飞睿科技,2025年AI智能语音助手市场发展趋势与乐鑫芯片解决方案分析
人工智能
许泽宇的技术分享1 小时前
从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
人工智能·科技·知识图谱
这里有鱼汤1 小时前
“对象”?对象你个头!——Python世界观彻底崩塌的一天
后端·python