linux基础命令

文章目录

设置环境变量

命令: export

shell 复制代码
以常见的两个环境变量:PATH和LD_LIBRARY_PATH为例
1. PATH
如果你有自己安装的命令,希望暴露出来直接使用。比如miniconda中的python,如果不加环境变量一般需要写完整的路径:/x/x/x/miniconda3/bin/python,如果希望直接写python就能用到调用conda中的python指令,那么可以:
export PATH=/x/x/x/miniconda3/bin:$PATH
先解释上述命令的格式,右侧的路径可以写多个,以:分隔,$PATH表示求PATH变量的值,因为PATH环境变量以前可能已经有值,需要保留那些值不影响其他命令的使用,其次当输入了python命令时,会从PATH变量的路径下去找python可执行文件,先找到哪个就用哪个,因此:前后路径的先后顺序也很重要。
2. LD_LIBRARY_PATH
和PATH路径一样,只不过LD_LIBRARY_PATH是设置动态链接库的搜索路径。比如安装了CUDA以后,一般需要设置:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

如果要查看是否设置成功可以使用命令:env | grep PATH 进行确认

最后以上设置的环境变量只在当前terminal的上下文中有效,如果希望全局有效,那么将export命令写入文件: ~/.bashrc,然后执行:source ~/.bashrc 生效或新打开终端

查看GPU信息

命令:nvidia-smi

shell 复制代码
user@host:/tmp/test_directory# nvidia-smi
Mon Nov  8 11:55:26 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.82       Driver Version: 440.82       CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    Off  | 00000000:01:00.0  On |                  N/A |
| 31%   57C    P0    66W / 250W |    408MiB / 12194MiB |      2%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN X (Pascal)    Off  | 00000000:04:00.0 Off |                  N/A |
| 93%   27C    P8    11W / 250W |      2MiB / 12196MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1450      G   /usr/lib/xorg/Xorg                            32MiB |
|    0      2804      G   /usr/lib/xorg/Xorg                           351MiB |
+-----------------------------------------------------------------------------+
shell 复制代码
Memory-Usage          # 内存的使用情况
408MiB / 12194MiB     # 前者408MiB代表已使用的显存,后者12194MiB代表总现存
shell 复制代码
GPU-Util              # GPU的使用率
2%                    # 使用率百分比

如果需要不停的输出GPU占用信息,那么使用nvidia-smi -l 1每隔1秒输出一次,或使用watch -n 1 nvidia-smi也是同样的效果

查看/杀死进程

查看进程命令: ps

杀死进程命令:kill

shell 复制代码
root@container-5e3e11aeb4-948a17b1:~# ps -ef 
UID          PID    PPID  C STIME TTY          TIME CMD
root           1       0  0 14:04 ?        00:00:00 bash /init/boot/boot.sh
root          58      48  8 14:04 ?        00:00:03 /root/miniconda3/bin/python /root/miniconda3/bin/jupyter-lab --allow-root
root          60      48  0 14:04 ?        00:00:00 /usr/sbin/sshd -D
root          61      48 10 14:04 ?        00:00:04 /root/miniconda3/bin/python /root/miniconda3/bin/tensorboard --host 0.0.0.0 --port 6006 --logdir /root/tf-logs
root         146      61  0 14:04 ?        00:00:00 /root/miniconda3/lib/python3.8/site-packages/tensorboard_data_server/bin/server --logdir=/root/tf-logs
root         402     338 99 14:05 pts/0    00:00:06 python tensorflow2.x-test.py

从ps的输出结果中根据执行的命令名称找到要杀死的进程,比如最后python tensorflow2.x-test.py命令执行的进程ID是402,因此可以:

shell 复制代码
root@container-5e3e11aeb4-948a17b1:~# kill -9 402
root@container-5e3e11aeb4-948a17b1:~#

kill后可以再次使用ps -ef确认进程是否已经结束。

查看进程的CPU和内存占用

命令:top

shell 复制代码
Tasks:  11 total,   2 running,   9 sleeping,   0 stopped,   0 zombie
%Cpu(s):  2.3 us,  1.3 sy,  0.0 ni, 96.3 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem : 52801571+total, 45453059+free,  7807904 used, 65677196 buff/cache
KiB Swap:  2074620 total,  2074620 free,        0 used. 51678192+avail Mem 
    PID user@host      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND             
   2316 root      20   0 21.846g 1.796g 244664 R 101.4  0.4   0:05.56 python               
     58 root      20   0  372352  84804  15540 S   1.4  0.0   0:05.40 jupyter-lab         
     59 root      20   0  713796  11288   7668 S   1.4  0.0   0:01.31 proxy               
   2395 root      20   0   45920   3940   3444 R   1.4  0.0   0:00.01 top                 
      1 root      20   0   25368   3724   3404 S   0.0  0.0   0:00.07 bash                 
     48 root      20   0   55060  24328   9728 S   0.0  0.0   0:00.33 supervisord         
     60 root      20   0   72304   5872   5140 S   0.0  0.0   0:00.01 sshd                 
     61 root      20   0 9756148 315032 156124 S   0.0  0.1   0:04.16 tensorboard         
    146 root      20   0 1582996   6964   5296 S   0.0  0.0   0:00.04 server               
    338 root      20   0   25824   4312   3800 S   0.0  0.0   0:00.18 bash                 
    481 root      20   0   25824   4544   4040 S   0.0  0.0   0:00.18 bash

如果有高负载(CPU使用率高)的情况,那么一般进程都会排在最上边,根据进程名称可以进行确认。那么这个进程占用的CPU可以通过%CPU字段读取出来,内存更复杂一些,但是一般看RES字段就够了。比如上边第一个Python进程CPU的占用率是101.4%,内存使用大小是1.796g(Tips:如果内存显示的单位和上述不同,按e键切换)

重定向日志

命令: >

shell 复制代码
user@host:/tmp# python train.py    # 一般情况下日志会输出到stdout/stderr中
Epoch.1 Iter 20
Epoch.1 Iter 40
Epoch.1 Iter 50
...

user@host:/tmp# python train.py > ./train.log 2>&1  # 把stdout/stderr中的日志重定向到train.log文件中,最后的2>&1中,2代表stderr, 1代表stdout,&1可以理解成像c语言中的求地址

user@host:/tmp# cat ./train.log    # 将train.log文件中的内容打印在stdout。cat(Concatenate FILE(s) to standard output.)
Epoch.1 Iter 20
Epoch.1 Iter 40
Epoch.1 Iter 50
...

user@host:/tmp$ python train.py > ./train.log 2>&1 &   # 如果最后再加一个&的效果是后台运行,还可以参考nohup的配合使用 
相关推荐
Kusunoki_D32 分钟前
速查 Linux 常用指令 II
linux·运维·服务器
xmweisi021 小时前
Ansible内置模块之 group
linux·运维·ansible·rhce·rhca·红帽认证
小猪写代码1 小时前
Ubuntu 系统默认已安装 python,此处只需添加一个超链接即可
linux·python·ubuntu
孤寂大仙v2 小时前
【Linux笔记】——Linux线程理解与分页存储的奥秘
linux·运维·笔记
有谁看见我的剑了?2 小时前
ubuntu 22.04 wifi网卡配置地址上网
linux·运维·ubuntu
码农新猿类2 小时前
Ubuntu摄像头打开失败
linux·运维·ubuntu
jstart千语3 小时前
【消息队列】RabbitMQ基本认识
java·服务器·分布式·rabbitmq
PWRJOY3 小时前
Ubuntu磁盘空间分析:du命令及常用组合
linux·运维·ubuntu
ASDyushui3 小时前
Shell 编程之正则表达式与文本处理器
linux·正则表达式
wanhengidc3 小时前
SCDN能够运用在物联网加速当中吗?
运维·服务器·网络