ubuntu 18.04 cuda 11.01 gpgpu-sim 裸机编译

1,环境

ubuntu 18.04

x86_64

cuda 11.01

gpgpu-sim master

commit 90ec3399763d7c8512cfe7dc193473086c38ca38

2,预备环境

一个比较新的 ubuntu 18.04,为了迎合 cuda 11.01 的版本需求

安装如下软件:

bash 复制代码
sudo apt-get install -y     xutils-dev bison zlib1g-dev flex libglu1-mesa-dev doxygen graphviz     python-pmw python-ply python-numpy python-matplotlib python-pip libpng-dev

3,安装cuda sdk 11.01

下载:

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/11.0.1/local_installers/cuda_11.0.1_450.36.06_linux.run

安装在目录 /home/hanmeimei/cuda/cuda

bash 复制代码
 bash cuda_11.0.1_450.36.06_linux.run --silent --toolkit --toolkitpath=/home/hanmeimei/cuda/cuda

设置环境变量:

bash 复制代码
export CUDA_INSTALL_PATH=/home/hanmeimei/cuda/cuda

4,下载编译 gpgpu-sim master

bash 复制代码
git clone https://github.com/gpgpu-sim/gpgpu-sim_distribution.git

cd gpgpu-sim_distribution/

设置环境:

bash 复制代码
 . setup_environment

make -j

5. 编译运行 cuda app

此时 nvcc 是刚才安装的 nvcc

vim vectorAdd.cu

cpp 复制代码
#include <iostream>
#include <cuda_runtime.h>
 
#define N 16384
 
// write kernel function of vector addition
__global__ void vecAdd(float *a, float *b, float *c, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if (i < n)
        c[i] = a[i] + b[i];
}
 
int main()
{
    float *a, *b, *c;
    float *d_a, *d_b, *d_c;
    int size = N * sizeof(float);
 
    // allocate space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);
 
    // allocate space for host copies of a, b, c and setup input values
    a = (float *)malloc(size);
    b = (float *)malloc(size);
    c = (float *)malloc(size);
 
    for (int i = 0; i < N; i++)
    {
        a[i] = i;
        b[i] = i * i;
    }
 
    // copy inputs to device
    cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
 
    // launch vecAdd() kernel on GPU
    vecAdd<<<(N + 255) / 256, 256>>>(d_a, d_b, d_c, N);
 
    cudaDeviceSynchronize();
 
    // copy result back to host
    cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
 
    // verify result
    for (int i = 0; i < N; i++)
    {
        if (a[i] + b[i] != c[i])
        {
            std::cout << "Error: " << a[i] << " + " << b[i] << " != " << c[i] << std::endl;
            break;
        }
    }
 
    std::cout << "Done!" << std::endl;
 
    // clean up
    free(a);
    free(b);
    free(c);
    cudaFree(d_a);
    cudaFree(d_b);
    cudaFree(d_c);
 
    return 0;
}

编译:

bash 复制代码
nvcc vectorAdd.cu --cudart shared -o vectorAdd

拷贝 配置文件:

bash 复制代码
cp gpgpu-sim_distribution/configs/tested-cfgs/SM7_QV100/config_volta_islip.icnt ./
bash 复制代码
 cp gpgpu-sim_distribution/configs/tested-cfgs/SM7_QV100/gpgpusim.config ./

运行app;

./vectorAdd

运行结束:

相关推荐
碧海潮生_CC13 小时前
【CUDA笔记】04 CUDA 归约, 原子操作,Warp 交换
笔记·cuda
fpcc4 天前
并行编程实战——CUDA编程的流的优先级
c++·cuda
碧海潮生_CC6 天前
【CUDA笔记】03 CUDA GPU 架构与一般的程序优化思路(下)
笔记·架构·cuda
中医正骨葛大夫7 天前
一文解决如何在Pycharm中创建cuda深度学习环境?
pytorch·深度学习·pycharm·软件安装·cuda·anaconda·配置环境
lvxiangyu1112 天前
wsl2 ubuntu24 opengl 无法使用nvidia显卡 解决方法记录
wsl·cuda·opengl
李昊哲小课12 天前
wsl ubuntu24.04 cuda13 cudnn9 pytorch 显卡加速
人工智能·pytorch·python·cuda·cudnn
wanzhong233313 天前
CUDA学习2-CPU和GPU的性能优化
深度学习·gpu·cuda·高性能计算
碧海潮生_CC19 天前
【CUDA笔记】01-入门简介
笔记·cuda
喆星时瑜22 天前
关于 ComfyUI 的 Windows 本地部署系统环境教程(详细讲解Windows 10/11、NVIDIA GPU、Python、PyTorch环境等)
python·cuda·comfyui
安全二次方security²25 天前
CUDA C++编程指南(1)——简介
nvidia·cuda·c/c++·device·cuda编程·architecture·compute unified