一文解决如何在Pycharm中创建cuda深度学习环境?

想必大家都知道,目前深度学习最好的框架便是用Python编写的PyTorch,而Pycharm作为最受欢迎的Python IDE,广泛被大家用来训练模型。因此本文介绍如何利用Anaconda这个软件来为Pycharm配置环境。

1 下载安装必备软件

1.1 Pycharm

Pycharm是一款用来编写Python程序的IDE,我们写代码、跑程序,都在它上面运行。

IDE指集成开发环境,可以简单理解成编辑器+编译器+运行终端+代码检查等。

官网:PyCharm,您需要的唯一 Python IDEhttps://www.jetbrains.com/zh-cn/pycharm/

目前来看社区版的就够用,如果想使用专业版可以用学生邮箱申请免费使用,或者参考我另一篇文章。

1.2 Cuda Toolkit和cuDNN

Cuda Toolkit通俗来讲就是让gpu给你干活的程序。

gpu是显卡上的运算部件。我们的电脑上主要有两个地方能够运算------中央处理器(CPU)和显卡核心(GPU)。CPU的核心很少(一般10多个),但每个核心都相当牛×,擅长处理复杂问题,可以比作十个老师;GPU的核心多达数万个,但每个核心都比较简单,可以比作一万个学生。但深度学习所做的工作,是大量的简单工作,好比让解10000个一元二次方程,一万个学生同时发力,速度肯定比10个老师快得多。事实上对于典型的深度学习任务,GPU训练要比CPU快几十倍。

官网:CUDA Toolkit - Free Tools and Training | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit

根据笔者经验,cuda toolkit下载最新版的就行,Pytorch的老版本也支持新版toolkit,不会出现版本不兼容的问题。(如果网速可以的话,安装包建议下载local版本,这样个别组件安装失败的话可以用NanaZip解压安装包,单独安装这个组件。)

下载安装好之后,在设置里搜索"环境变量",选择"编辑系统的环境变量",在弹出的窗口里选择红框

看看有没有如下两个系统变量(以你安装的版本为准,不一定是13.0)。

然后找到变量Path,选中它并点击编辑按钮,看看有没有这两个变量。

缺哪个就点击新建,添加上就行。

cuDNN是加速计算的组件,官网如下:CUDA Deep Neural Network (cuDNN) | NVIDIA Developerhttps://developer.nvidia.com/cudnn

1.3 Anaconda

Anaconda是用来创建虚拟环境的(当然功能不止于此),虚拟环境里包括python、pytorch等一系列环境,这样我们在用Pycharm编辑代码的时候,可以直接把创建好的虚拟环境导入到Pycharm里,不用自己手动配置了。

官网下载:

Download Anaconda Distribution | Anacondahttps://www.anaconda.com/download下载完正常安装即可,安装后配置环境,还是在变量Path中,添加这三条(以你实际安装的路径调整):

bash 复制代码
D:\Anaconda

D:\Anaconda\Scripts

D:\Anaconda\Library\bin

安装完成后,可以看到程序里多了个anaconda prompt。打开它,我们接着下一步。

2 配置虚拟环境

创建:参考以下代码,python版本可以根据自己的需要变化。

bash 复制代码
conda create -n name python=3.13  # 创建一个空的虚拟环境,name处换上你心仪的名字

创建过程中,会问你y还是n,选y即可。

创建完成后需要激活:

bash 复制代码
conda activate name #激活

顺便附上灭活、删除虚拟环境的代码

bash 复制代码
conda deactivate   #灭活,再次激活的时候还能使用
conda remove -n  name --all   #从你磁盘上删除,请确保你再也不需要它了

安装后可以键入python命令,来看看python是否被成功安装。如果显示python版本了,就说明安装成功了。

激活后,便可以安装Pytorch了。可以在官网上找到合适的版本下载:

https://pytorch.org/get-started/https://pytorch.org/get-started/

目前建议通过pip渠道安装。复制选项下面的命令,粘贴到anaconda prompt上(请确保虚拟环境被激活),运行即可。

如果需要其他软件包也可以通过命令行安装,这里不展开详述。

3 打开PyCharm

打开并创建项目后,注意到右下方有一系列小字,如图所示:

点击红框,可以看到有如下选项,点击添加本地解释器

环境选择"选择现有",类型选择Conda

一般Pycharm会自动给出conda的路径,底下的环境里就可以看到刚才创建的虚拟环境,点确定即可。

4 大功告成

如果对你有帮助,敬请点赞、收藏、关注。如有错误,还望斧正,谢谢!

相关推荐
Franklin1 小时前
AI Coding 基础实践03 - Trae AI在Pycharm中的使用02 - 读取不了项目的文件问题解决
ide·python·pycharm
胖墩会武术1 小时前
【OpenCV图像处理】深度学习:cv2.dnn() —— 图像分类、人脸检测、目标检测
图像处理·pytorch·python·opencv
帮帮志1 小时前
PyCharm 开发工具 不同的模式
ide·python·pycharm
龙腾AI白云2 小时前
具身智能-高层任务规划(High-level Task Planning)
深度学习·数据挖掘
趙卋傑2 小时前
接口自动化测试
python·pycharm·pytest
WWZZ20252 小时前
快速上手大模型:深度学习9(池化层、卷积神经网络1)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
AI即插即用5 小时前
即插即用系列 | 2025 SOTA Strip R-CNN 实战解析:用于遥感目标检测的大条带卷积
人工智能·pytorch·深度学习·目标检测·计算机视觉·cnn·智慧城市
IT油腻大叔5 小时前
DeepSeek-多层注意力计算机制理解
python·深度学习·机器学习
九年义务漏网鲨鱼5 小时前
【多模态大模型面经】现代大模型架构(一): 组注意力机制(GQA)和 RMSNorm
人工智能·深度学习·算法·架构·大模型·强化学习