算法笔记(十一)——优先级队列(堆)

文章目录

优先级队列是一种特殊的队列,元素按照优先级从高到低(或从低到高)排列,高优先级的元素先出队,可以用 堆来实现

是一种二叉树的结构,有两种主要类型:最大堆和最小堆

下面附上之前写的两篇博客:
优先级队列(priority_queue)
数据结构堆(Heap)的实现

最后一块石头的重量

题目:最后一块石头的重量


思路

  • 创建一个大根堆priority_queue<int> pq;默认情况下是大根堆,将所以石头加入到堆中
  • 用一个循环处理,直至堆中元素剩余元素个数小于等于1
  • 依次取出堆顶元素x,y其中x >= y
  • x = y ,则pop掉两元素;
  • x > y,则pop掉两元素,之后将x - ypush进堆
  • 循环结束后,若剩一个元素,即为其重量;若堆为空,则返回0

C++代码

cpp 复制代码
class Solution 
{
public:
    int lastStoneWeight(vector<int>& stones) 
    {
        priority_queue<int> pq; 
        for(auto e : stones) 
            pq.push(e);
        
        while(pq.size() > 1) 
        {
            int x = pq.top();
            pq.pop();
            int y = pq.top();
            pq.pop();

            if (x > y)
                pq.push(x - y);   
        }

        return pq.size() == 0 ? 0 : pq.top();  
    }
};

数据流中的第 K 大元素

题目:数据流中的第 K 大元素


思路

  • 经典topK问题
  • 创建一个大小为k的堆
  • 循环:依次进堆,判断堆的大小是否超过k

找的是第k大元素,维护一个大小为k的最小堆,保证堆中只有前 k大的元素

  • 将新元素加入最小堆中,然后检查堆的大小是否超过k,如果超过则弹出堆顶元素
    最终返回当前堆顶元素,即为第 k大的元素
  • add 操作后始终保持堆中的元素为前 K 大的元素
  • 而堆顶元素即为第k大的元素。

C++代码

cpp 复制代码
class KthLargest 
{
    // 创建一个大小为 k 的小根堆
    priority_queue<int, vector<int>, greater<int>> heap;
    int _k;
public:
    KthLargest(int k, vector<int>& nums) 
    {
        _k = k;
        for(int& x : nums)
        {
            heap.push(x);
            if(heap.size() > k) 
                heap.pop();
        }
    }
    
    int add(int val) 
    {
        heap.push(val);
        if(heap.size() > _k) 
            heap.pop();

        return heap.top();
    }
};

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest* obj = new KthLargest(k, nums);
 * int param_1 = obj->add(val);
 */

前K个高频单词

题目:前K个高频单词


思路

  • 经典topK问题
  • 创建一个大小为k的堆
  • 循环:依次进堆,判断堆的大小是否超过k

找出前k个出现次数最多的,所以整体我们建小堆

对比较函数按照要求实现,不能用库里的;
如果两个字符串出现频率相同,那么我们让两字符串中字典序较小的排在前面,否则我们让出现频率较高的排在前面
C++代码

cpp 复制代码
class Solution 
{
    typedef pair<string, int> PSI;
    struct cmp
    {
        bool operator()(const PSI& x, const PSI& y)
        {
            if(x.second == y.second) return x.first < y.first;
            else return x.second > y.second;
        }
    };
public:
    vector<string> topKFrequent(vector<string>& words, int k) 
    {
        // 统计单词的频次
        unordered_map<string, int> hash;
        for(auto e:words) hash[e]++;
        // 创建一个大小为 k 的堆
        priority_queue<PSI, vector<PSI>, cmp> heap;
        
        for(auto&e:hash)
        {
            heap.push(e);
            if(heap.size() > k) heap.pop();
        }
        // 答案
        vector<string> ret(k);
        for(int i = k - 1; i >= 0; i--)
        {
            ret[i] = heap.top().first;
            heap.pop();
        }
        return ret;
    }
};

数据流的中位数

题目:数据流的中位数


思路

利用大小堆来维护数据流的中位数

  • 初始化两个优先队列
  • left 用于存放较小的一半元素(大根堆)
  • right 用于存放较大的一半元素(小根堆)
  • 个数为偶数时,大根堆元素个数m等于小根堆元素个数n,即m = n
  • 个数为奇数时,大根堆left多放一个,即m = n + 1
  • x,y 分别为大根堆、小根堆堆顶元素

add()添加元素时,我们按照下述方法维护两个堆

  • m == n时,
    • num <= x || m == 0num直接进入left
    • num > x num先进入right堆,再将right堆定元素放入left
  • m == n + 1时,
    • num <= xnum直接进入left堆,再将left堆定元素放入堆right
    • num > x num直接进入right

C++代码

cpp 复制代码
class MedianFinder 
{
    priority_queue<int> left;
    priority_queue<int, vector<int>, greater<int>> right;
public:
    MedianFinder() {}
    
    void addNum(int num) 
    {
        if(left.size()  == right.size())
        {
            if(left.empty() || num <= left.top()) 
                left.push(num);
            else
            {
                right.push(num);
                left.push(right.top());
                right.pop();
            }
        }
        else
        {
            if(num <= left.top())
            {
                left.push(num);
                right.push(left.top());
                left.pop();
            }
            else 
                right.push(num);
        }
    }
    
    double findMedian() 
    {
        if(left.size() == right.size()) 
            return (left.top() + right.top()) / 2.0;

        return left.top();
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
old_power15 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
doubt。16 分钟前
【BUUCTF】[RCTF2015]EasySQL1
网络·数据库·笔记·mysql·安全·web安全
Bran_Liu29 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing31 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
Zelotz1 小时前
线段树与矩阵
笔记
Jcqsunny1 小时前
[分治] FBI树
算法·深度优先··分治
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
汇能感知2 小时前
光谱相机在智能冰箱的应用原理与优势
经验分享·笔记·科技
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
謓泽2 小时前
【数据结构】二分查找
数据结构·算法