论文笔记:Online Class-Incremental Continual Learning with Adversarial Shapley Value

这篇工作的focus 是 memory-based approach

1. 挑战/问题:

  1. 灾难性遗忘:深度神经网络在学习新任务时往往会忘记先前任务的知识。
  2. 内存和计算效率:在个人设备上执行深度学习任务时,需要最小化内存占用和计算成本。
  3. 数据流增量学习:模型需要能够从非独立同分布的数据流中持续学习。

2. Contribution

  1. 提出一种Adversarial Shapley value Experience Replay (ASER)的新颖的基于replay-based的方法。 ASER 的灵感来自于合作博弈论中使用的沙普利值 (SV) ,以将总收益公平地分配给所有参与者 。
  2. 在作者的 CL 设置中,使用 SV 来确定记忆样本对学习表现的贡献。还引入了用于 CL 记忆检索的 SV 的对抗性视角,旨在根据记忆缓冲区中"友好"样本的决策边界保留(以保持学习稳定性并避免遗忘)及其对"对手"的干扰来对记忆样本进行评分当前任务中的样本会破坏现有的基于记忆的类别边界(以鼓励可塑性和最佳学习)。

3. Method

  1. Adversarial Shapley value Experience Replay (ASER):这是一种基于经验回放的方法,利用Shapley值来决定记忆样本对学习性能的贡献。
  2. 对抗性视角:引入了Shapley值的对抗性视角,以在记忆样本中找到既能够保留现有记忆类别边界,又能够最大化地干扰新任务样本的样本。
相关推荐
凡人的AI工具箱几秒前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜6 分钟前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
凡人的AI工具箱10 分钟前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
prinTao12 分钟前
【论文阅读】DynamicControl :一种新的controlnet多条件控制方法
论文阅读
小军军军军军军14 分钟前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
诚威_lol_中大努力中37 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金1 小时前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_1 小时前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索