论文笔记:Online Class-Incremental Continual Learning with Adversarial Shapley Value

这篇工作的focus 是 memory-based approach

1. 挑战/问题:

  1. 灾难性遗忘:深度神经网络在学习新任务时往往会忘记先前任务的知识。
  2. 内存和计算效率:在个人设备上执行深度学习任务时,需要最小化内存占用和计算成本。
  3. 数据流增量学习:模型需要能够从非独立同分布的数据流中持续学习。

2. Contribution

  1. 提出一种Adversarial Shapley value Experience Replay (ASER)的新颖的基于replay-based的方法。 ASER 的灵感来自于合作博弈论中使用的沙普利值 (SV) ,以将总收益公平地分配给所有参与者 。
  2. 在作者的 CL 设置中,使用 SV 来确定记忆样本对学习表现的贡献。还引入了用于 CL 记忆检索的 SV 的对抗性视角,旨在根据记忆缓冲区中"友好"样本的决策边界保留(以保持学习稳定性并避免遗忘)及其对"对手"的干扰来对记忆样本进行评分当前任务中的样本会破坏现有的基于记忆的类别边界(以鼓励可塑性和最佳学习)。

3. Method

  1. Adversarial Shapley value Experience Replay (ASER):这是一种基于经验回放的方法,利用Shapley值来决定记忆样本对学习性能的贡献。
  2. 对抗性视角:引入了Shapley值的对抗性视角,以在记忆样本中找到既能够保留现有记忆类别边界,又能够最大化地干扰新任务样本的样本。
相关推荐
晓晓不觉早几秒前
五大新一代大模型实测
人工智能
L***一5 分钟前
大数据与财务管理专业就业方向与职业发展路径探析——基于数字化时代复合型人才需求视角
人工智能
Testopia7 分钟前
AI编程实例 -- 数据可视化实战教程
人工智能·信息可视化·ai编程
跨境摸鱼12 分钟前
选品别只看“需求”,更要看“供给”:亚马逊新思路——用“供给断层”挑出更好打的品
大数据·人工智能·跨境电商·亚马逊·跨境·营销策略
XX風15 分钟前
5.1 deep learning introduction
人工智能·深度学习
m0_5648768415 分钟前
分布式训练DP与DDP
人工智能·深度学习·算法
汪碧康18 分钟前
OpenClaw 原版和汉化版windows 和Linux 下的部署实践
linux·人工智能·windows·agent·clawdbot·moltbot·openclaw
川西胖墩墩19 分钟前
文生视频AI工具深度评测:2024年主流视频生成模型的技术对比与创作指南
人工智能·数据挖掘·音视频
科技圈快讯20 分钟前
智能体工厂引领工业跃迁:美云智数全域AI重构研产供销价值链
人工智能·重构
lrh12280029 分钟前
详解逻辑回归算法:分类任务核心原理、损失函数与评估方法
人工智能·分类·数据挖掘