脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

原文链接:CSDN-脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection

  • 目录
    • 论文信息
    • 主要贡献
    • SpikeYOLO
    • [Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron](#Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron)
    • 实验对比
      • [静态COCO 2017 Dataset 对比:](#静态COCO 2017 Dataset 对比:)
      • [神经形态Gen1 Automotive Detection Dataset对比:](#神经形态Gen1 Automotive Detection Dataset对比:)

目录

论文信息

论文标题:Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
论文地址
code

由中科院自动化所(李国齐团队)研究人员发表于ECCV 2024 Oral。

主要贡献

  • 设计了SpikeYOLO architecture用于目标检测。
  • 设计了新的脉冲神经元:I-LIF,训练时保持整数值通信推理时重参数化为低功耗的二元脉冲。
  • 在静态以及神经形态目标检测数据集上均取得了SOTA性能。

SpikeYOLO

  • 宏观设计参考YOLOv8,微观设计参考作者团队之前提出的Meta-SpikeFormer[1]中的meta SNN block。
  • 设计了SNN-Block-1和SNN-Block-2,其他架构和YOLOv8保持一致。
  • SNN-Block-1:
  • SNN-Block-2:

Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron

  • 脉冲神经元累积膜电势,当膜电势达到阈值时产生脉冲,从连续的膜电势到离散的脉冲信号会带来信息损失。
  • I-LIF神经元基于LIF神经元模型,在训练时产生模拟值输出,而在推理时转换为二元的脉冲,从而缓解信息损失提升性能。
  • 训练期间将膜电势round到最近的整数值,控制其输出范围位于[0,D]之间,D是超参数标识I-LIF可产生的最大值输出。使用矩形函数代理梯度计算梯度信息。
  • 推理期间将原始的时间步长 T T T扩展至 T × D T \times D T×D,将本应位于[0,D]的输出在扩展后的时间步长内转换为每个时间步长内的二元脉冲输出。

实验对比

静态COCO 2017 Dataset 对比:

神经形态Gen1 Automotive Detection Dataset对比:

更多详细信息请看原文。

参考文献:

1\] Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of next-generation neuromorphic chips. In ICLR. 2024. 本文由[CSDN-lan人啊](https://blog.csdn.net/qq_43622216)原创,转载请注明!

相关推荐
AI即插即用3 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
hoiii1875 小时前
基于混合神经网络(CNN-LSTM)的电能扰动信号特征识别MATLAB实现
神经网络·cnn·lstm
RockHopper20255 小时前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知
0x2116 小时前
[论文阅读]Through the Stealth Lens: Rethinking Attacks and Defenses in RAG
论文阅读
音沐mu.6 小时前
【45】俯拍视角车辆数据集(有v5/v8模型)/YOLO俯拍视角车辆检测
yolo·目标检测·数据集·俯拍视角车辆检测·俯拍视角车辆数据集
2401_841495646 小时前
【机器学习】人工神经网络(ANN)
人工智能·python·深度学习·神经网络·机器学习·特征学习·非线性映射
薛不痒6 小时前
深度学习之神经网络的构建和实现
人工智能·深度学习·神经网络
一只大侠的侠7 小时前
Python实现TTAO算法:优化神经网络中的时序预测任务
python·神经网络·算法
Yeats_Liao18 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
老周聊架构18 小时前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测