脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

原文链接:CSDN-脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection

  • 目录
    • 论文信息
    • 主要贡献
    • SpikeYOLO
    • [Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron](#Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron)
    • 实验对比
      • [静态COCO 2017 Dataset 对比:](#静态COCO 2017 Dataset 对比:)
      • [神经形态Gen1 Automotive Detection Dataset对比:](#神经形态Gen1 Automotive Detection Dataset对比:)

目录

论文信息

论文标题:Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
论文地址
code

由中科院自动化所(李国齐团队)研究人员发表于ECCV 2024 Oral。

主要贡献

  • 设计了SpikeYOLO architecture用于目标检测。
  • 设计了新的脉冲神经元:I-LIF,训练时保持整数值通信推理时重参数化为低功耗的二元脉冲。
  • 在静态以及神经形态目标检测数据集上均取得了SOTA性能。

SpikeYOLO

  • 宏观设计参考YOLOv8,微观设计参考作者团队之前提出的Meta-SpikeFormer[1]中的meta SNN block。
  • 设计了SNN-Block-1和SNN-Block-2,其他架构和YOLOv8保持一致。
  • SNN-Block-1:
  • SNN-Block-2:

Integer Leaky Integrate-and-Fire (I-LIF) Spiking Neuron

  • 脉冲神经元累积膜电势,当膜电势达到阈值时产生脉冲,从连续的膜电势到离散的脉冲信号会带来信息损失。
  • I-LIF神经元基于LIF神经元模型,在训练时产生模拟值输出,而在推理时转换为二元的脉冲,从而缓解信息损失提升性能。
  • 训练期间将膜电势round到最近的整数值,控制其输出范围位于[0,D]之间,D是超参数标识I-LIF可产生的最大值输出。使用矩形函数代理梯度计算梯度信息。
  • 推理期间将原始的时间步长 T T T扩展至 T × D T \times D T×D,将本应位于[0,D]的输出在扩展后的时间步长内转换为每个时间步长内的二元脉冲输出。

实验对比

静态COCO 2017 Dataset 对比:

神经形态Gen1 Automotive Detection Dataset对比:

更多详细信息请看原文。

参考文献:

1\] Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of next-generation neuromorphic chips. In ICLR. 2024. 本文由[CSDN-lan人啊](https://blog.csdn.net/qq_43622216)原创,转载请注明!

相关推荐
祝余Eleanor1 天前
Day 51 神经网络调参指南
深度学习·神经网络·机器学习
大学生毕业题目1 天前
毕业项目推荐:90-基于yolov8/yolov5/yolo11的工程车辆检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·工程车辆检测
LaughingZhu1 天前
Product Hunt 每日热榜 | 2025-12-26
人工智能·经验分享·深度学习·神经网络·产品运营
吾在学习路1 天前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习
Niuguangshuo1 天前
DeepDream:窥视神经网络内部世界的梦幻之窗
人工智能·深度学习·神经网络
海边夕阳20062 天前
【每天一个AI小知识】:什么是图神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习
dundunmm2 天前
【论文阅读】Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
论文阅读·自适应·对比·对抗·时空数据·时空图学习
core5122 天前
神经网络 (Neural Networks):模仿大脑的超级机器
人工智能·深度学习·神经网络
不惑_2 天前
通俗理解什么是神经网络
人工智能·深度学习·神经网络
core5122 天前
ReLU 激活函数:神经网络的“开关”
人工智能·深度学习·神经网络·relu