AcWing 5292:跳台阶 ← 动态规划

【题目来源】
https://www.acwing.com/problem/content/5295/

【题目描述】
一个楼梯共有 n 级台阶,每次可以走一级或两级或三级,问从第 0 级台阶走到第 n 级台阶一共有多少种方案。

【输入格式】
共一行,包含一个整数 n。

【输出格式】
共一行,包含一个整数,表示方案数。

【数据范围】
1≤n≤15

【输入样例】
5

【输出样例】
13

【算法分析】
此问题是"计数型"问题,适用于利用动态规划方法解决。利用"最后一步法"求解的分析步骤如下:
1.确定状态
最后一步:走到最后一阶台阶,即走到第n阶台阶时,共有多少种不同的走法。
子问题:根据题意,走到第n阶台阶,有可能是从第n-1阶台阶、第n-2阶台阶或第n-3阶台阶走来的。根据加法原理,问题就转化为走到第n-1阶台阶、走到第n-2阶台阶及走到第n-3阶台阶的走法之和。
状态:根据上述"最后一步"、"子问题"部分的分析,可设状态为f(x):表示走到第x阶台阶时共有多少种走法。
2.状态转移方程
根据上文分析,可得状态转移方程为:f(n)=f(n-1)+f(n-2)+f(n-3)
3.初始条件和边界情况
由于n=0,1,2,3时,根据状态转移方程不能计算出f(0),f(1),f(2),f(3)。故需要将它们设置为初始条件。
根据计算,可得f(0)=0,f(1)=1,f(2)=2,f(3)=4
4.计算顺序
依据状态转移方程确定。

【算法代码】

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

const int maxn=20;
int f[maxn];

int main() {
    int n;
    cin>>n;
    f[0]=1;
    f[1]=1;
    f[2]=2;
    f[3]=4;
    for(int i=3;i<=n;i++){
        f[i]=f[i-1]+f[i-2]+f[i-3];
    }    
    cout<<f[n];
    
    return 0;
}

/*
in:5
out:13
*/

【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/112797538
https://www.acwing.com/solution/content/254912/

相关推荐
SeatuneWrite2 小时前
2025动态漫剧本工具推荐,助力创作高效便捷
动态规划
程序员-King.3 小时前
day161—动态规划—最长递增子序列(LeetCode-300)
算法·leetcode·深度优先·动态规划·递归
2501_901147834 小时前
组合总和IV——动态规划与高性能优化学习笔记
学习·算法·面试·职场和发展·性能优化·动态规划·求职招聘
2501_901147835 小时前
零钱兑换——动态规划与高性能优化学习笔记
学习·算法·面试·职场和发展·性能优化·动态规划·求职招聘
cwplh18 小时前
DP 优化二:斜率优化 DP
算法·动态规划
Pluchon20 小时前
硅基计划4.0 算法 动态规划进阶
java·数据结构·算法·动态规划
M__331 天前
动态规划进阶:简单多状态模型
c++·算法·动态规划
不知名XL1 天前
day30 动态规划03
算法·动态规划
老鼠只爱大米2 天前
LeetCode经典算法面试题 #84:柱状图中最大的矩形(单调栈、分治法等四种方法详细解析)
算法·leetcode·动态规划·单调栈·分治法·柱状图最大矩形
nju_spy2 天前
力扣每日一题 2026.1
算法·leetcode·二分查找·动态规划·最小生成树·单调栈·最长公共子序列