AcWing 5292:跳台阶 ← 动态规划

【题目来源】
https://www.acwing.com/problem/content/5295/

【题目描述】
一个楼梯共有 n 级台阶,每次可以走一级或两级或三级,问从第 0 级台阶走到第 n 级台阶一共有多少种方案。

【输入格式】
共一行,包含一个整数 n。

【输出格式】
共一行,包含一个整数,表示方案数。

【数据范围】
1≤n≤15

【输入样例】
5

【输出样例】
13

【算法分析】
此问题是"计数型"问题,适用于利用动态规划方法解决。利用"最后一步法"求解的分析步骤如下:
1.确定状态
最后一步:走到最后一阶台阶,即走到第n阶台阶时,共有多少种不同的走法。
子问题:根据题意,走到第n阶台阶,有可能是从第n-1阶台阶、第n-2阶台阶或第n-3阶台阶走来的。根据加法原理,问题就转化为走到第n-1阶台阶、走到第n-2阶台阶及走到第n-3阶台阶的走法之和。
状态:根据上述"最后一步"、"子问题"部分的分析,可设状态为f(x):表示走到第x阶台阶时共有多少种走法。
2.状态转移方程
根据上文分析,可得状态转移方程为:f(n)=f(n-1)+f(n-2)+f(n-3)
3.初始条件和边界情况
由于n=0,1,2,3时,根据状态转移方程不能计算出f(0),f(1),f(2),f(3)。故需要将它们设置为初始条件。
根据计算,可得f(0)=0,f(1)=1,f(2)=2,f(3)=4
4.计算顺序
依据状态转移方程确定。

【算法代码】

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

const int maxn=20;
int f[maxn];

int main() {
    int n;
    cin>>n;
    f[0]=1;
    f[1]=1;
    f[2]=2;
    f[3]=4;
    for(int i=3;i<=n;i++){
        f[i]=f[i-1]+f[i-2]+f[i-3];
    }    
    cout<<f[n];
    
    return 0;
}

/*
in:5
out:13
*/

【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/112797538
https://www.acwing.com/solution/content/254912/

相关推荐
睡不醒的kun4 天前
leetcode算法刷题的第三十四天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
散1125 天前
01数据结构-初探动态规划
数据结构·动态规划
cwplh5 天前
MX模拟赛总结
算法·动态规划
睡不醒的kun5 天前
leetcode算法刷题的第三十二天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
共享家95276 天前
经典动态规划题解
算法·leetcode·动态规划
二哈不在线6 天前
代码随想录二刷之“动态规划”~GO
算法·golang·动态规划
楼田莉子6 天前
C++动态规划算法:斐波那契数列模型
c++·学习·算法·动态规划
ulias2127 天前
单元最短路问题
数据库·c++·算法·动态规划
孤廖7 天前
从 “模板” 到 “场景”,用 C++ 磨透拓扑排序的实战逻辑
开发语言·c++·程序人生·算法·贪心算法·动态规划·学习方法
其古寺8 天前
贪心算法与动态规划:数学原理、实现与优化
算法·贪心算法·动态规划