力扣之1336.每次访问的交易次数

  • 题目:

  • sql建表语句:

sql 复制代码
Create table If Not Exists Visits (user_id int, visit_date date);
Create table If Not Exists Transactions (user_id int, transaction_date date, amount int);
Truncate table Visits;
insert into Visits (user_id, visit_date) values ('1', '2020-01-01');
insert into Visits (user_id, visit_date) values ('2', '2020-01-02');
insert into Visits (user_id, visit_date) values ('12', '2020-01-01');
insert into Visits (user_id, visit_date) values ('19', '2020-01-03');
insert into Visits (user_id, visit_date) values ('1', '2020-01-02');
insert into Visits (user_id, visit_date) values ('2', '2020-01-03');
insert into Visits (user_id, visit_date) values ('1', '2020-01-04');
insert into Visits (user_id, visit_date) values ('7', '2020-01-11');
insert into Visits (user_id, visit_date) values ('9', '2020-01-25');
insert into Visits (user_id, visit_date) values ('8', '2020-01-28');
Truncate table Transactions;
insert into Transactions (user_id, transaction_date, amount) values ('1', '2020-01-02', '120');
insert into Transactions (user_id, transaction_date, amount) values ('2', '2020-01-03', '22');
insert into Transactions (user_id, transaction_date, amount) values ('7', '2020-01-11', '232');
insert into Transactions (user_id, transaction_date, amount) values ('1', '2020-01-04', '7');
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '33');
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '66');
insert into Transactions (user_id, transaction_date, amount) values ('8', '2020-01-28', '1');
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '99');
  • 分析,刚看到这道题的时候,读题读了好几遍,有点难看懂,其实这道题的难点就是怎么遍历的输出出现的次数,这里首先我先想到了递归,但是呢,我刚开始的时候没有看清楚那个最大值,一直不知道这个递归的条件怎么写,最后才发现是访问的最大次数,并不是访问出现的最大次数,这里我们可以首先算出最大的访问次数,可以直接按照Transactions 表中user_id, transaction_date分组,然后算出count排序,取出最大值,然后左连接两个表,算出每个用户每天访问的次数,然后在按照次数分组,算出每个次数出现的次数,然后再与递归的表进行左连接,把为空的值换成零,就完成了。图表分析:

  • sql实现:

sql 复制代码
WITH RECURSIVE
    numbers AS (SELECT 0 AS num
                UNION ALL
                SELECT num + 1
                FROM numbers
                WHERE num < (select count(user_id) nu
                             from Transactions
                             group by user_id, transaction_date
                             order by nu desc
                             limit 1) -- 递归输出新的表
    ),
    t1 as (select v1.user_id, v1.visit_date, count(t.transaction_date) cou
           from Visits v1
                    left join Transactions T on v1.user_id = T.user_id and v1.visit_date = T.transaction_date
           group by v1.user_id, v1.visit_date), -- 连接两个表,算出每个人每天的次数
    t2 as (select cou, count(1) num
           from t1
           group by cou)
select n1.num transactions_count, ifnull(t2.num, 0) visits_count -- 算出每个次数出现的次数
from numbers n1
         left join t2 on n1.num = t2.cou
order by transactions_count  -- 连接递归表和出现次数的表,然后把空值换成0,按照transactions_count 排序
  • pandas例子代码:

python 复制代码
data = [[1, '2020-01-01'], [2, '2020-01-02'], [12, '2020-01-01'], [19, '2020-01-03'], [1, '2020-01-02'], [2, '2020-01-03'], [1, '2020-01-04'], [7, '2020-01-11'], [9, '2020-01-25'], [8, '2020-01-28']]
visits = pd.DataFrame(data, columns=['user_id', 'visit_date']).astype({'user_id':'Int64', 'visit_date':'datetime64[ns]'})
data = [[1, '2020-01-02', 120], [2, '2020-01-03', 22], [7, '2020-01-11', 232], [1, '2020-01-04', 7], [9, '2020-01-25', 33], [9, '2020-01-25', 66], [8, '2020-01-28', 1], [9, '2020-01-25', 99]]
transactions = pd.DataFrame(data, columns=['user_id', 'transaction_date', 'amount']).astype({'user_id':'Int64', 'transaction_date':'datetime64[ns]', 'amount':'Int64'})
  • pandas分析:

  • 我们首先先连接两个表,使用左连接,连接条件为user_id=user_id,visit_date=transaction_date,然后我们再按照user_id和visit_date分组,然后在算出transaction_date的值,会分别算出每个人每天的次数,然后我们在按照次数分组,算出每个次数有多少次,然后找出次数最大值,然后建一个新的dataframe对象,新增一列使用for循环添加数据,循环条件是最大值,然后再把这两个表通过次数左连接,然后给空值替换成0,就完成了这道题

  • pandas实现:

python 复制代码
import pandas as pd

def draw_chart(visits: pd.DataFrame, transactions: pd.DataFrame) -> pd.DataFrame:
    a=pd.merge(visits,transactions,left_on=['user_id','visit_date'],right_on=['user_id','transaction_date'],how='left')   -- 连接两个表,使用左连接,连接条件为user_id=user_id,visit_date=transaction_date

    b=a.groupby(['user_id','visit_date'])['transaction_date'].count().reset_index()  -- 按照'user_id','visit_date'分组,算出每个组内的transaction_date的个数

    c=b.groupby(['transaction_date'])['user_id'].count().reset_index() -- 按照每个人的次数分组,算出每个次数出现的次数

    ee=pd.DataFrame()  -- 创建一个新的dataframe对象
    ee['transactions_count']=[i for i in range(c['transaction_date'].max()+1)]     -- 添加一列,值为次数出现的最大值的循环                    
    o=pd.merge(ee,c,left_on='transactions_count',right_on='transaction_date',how='left').fillna(0).sort_values(['transactions_count'])  -- 连接两个表
    o=o[['transactions_count','user_id']] -- 取出所需要的两列
    o.columns=['transactions_count','visits_count']  -- 修改该列名
    return o
相关推荐
TTGGGFF3 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
码路星河3 小时前
基于 Vue + VueUse 的 WebSocket 优雅封装:打造高可用的全局连接管理方案
javascript·vue.js·websocket
摘星编程3 小时前
React Native + OpenHarmony:Accelerometer计步器代码
javascript·react native·react.js
晚风吹长发3 小时前
初步了解Linux中的命名管道及简单应用和简单日志
linux·运维·服务器·开发语言·数据结构·c++·算法
敲敲了个代码4 小时前
如何优化批量图片上传?队列机制+分片处理+断点续传三连击!(附源码)
前端·javascript·学习·职场和发展·node.js
圣保罗的大教堂4 小时前
leetcode 3315. 构造最小位运算数组 II 中等
leetcode
Σίσυφος19004 小时前
Halcon中霍夫直线案例
算法
Anastasiozzzz4 小时前
leetcode力扣hot100困难题--4.俩个正序数列的中位数
java·算法·leetcode·面试·职场和发展
BHXDML5 小时前
第六章:推荐算法
算法·机器学习·推荐算法
Tisfy5 小时前
LeetCode 3510.移除最小数对使数组有序 II:有序集合
算法·leetcode·题解·设计·有序集合