机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,主要用于将数据集划分成K个不同的簇。以下是对K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择K个点作为初始的聚类中心。
  2. 针对每个数据点,计算其与每个聚类中心的距离,并将数据点分配到距离最近的聚类中心所对应的簇中。
  3. 更新聚类中心的位置,即将每个簇的所有数据点的均值作为该簇的新聚类中心。
  4. 重复第2和第3步,直到聚类中心的位置不再发生变化或达到预定的迭代次数。

优点:

  1. 简单直观:算法易于理解和实现。
  2. 可扩展性:算法适用于大规模数据集。
  3. 高效性:算法的时间复杂度较低,一般情况下迭代次数较少。

缺点:

  1. 需要预先指定聚类数量K:在实际应用中,聚类数量的选择对结果的影响较大,需要通过试验和领域知识进行调整。
  2. 对初始聚类中心敏感:不同的初始聚类中心会导致不同的聚类结果,可能陷入局部最优解。
  3. 对异常值敏感:异常值可能会造成聚类中心的偏移,从而影响聚类结果。

总结: K-均值聚类算法是一种简单、直观且高效的聚类算法,适用于大规模数据集。然而,算法需要预先指定聚类数量K,并且对初始聚类中心和异常值较为敏感。在实际应用中,需要根据具体情况综合考虑算法的优缺点并进行调整。

相关推荐
wait a minutes1 小时前
【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)
人工智能·机器学习·自动驾驶
聚客AI1 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
RaymondZhao3411 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng113312 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
强盛小灵通专卖员16 小时前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
计算机sci论文精选18 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
Christo318 小时前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
JXL186020 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉20 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM20 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库