机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,主要用于将数据集划分成K个不同的簇。以下是对K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择K个点作为初始的聚类中心。
  2. 针对每个数据点,计算其与每个聚类中心的距离,并将数据点分配到距离最近的聚类中心所对应的簇中。
  3. 更新聚类中心的位置,即将每个簇的所有数据点的均值作为该簇的新聚类中心。
  4. 重复第2和第3步,直到聚类中心的位置不再发生变化或达到预定的迭代次数。

优点:

  1. 简单直观:算法易于理解和实现。
  2. 可扩展性:算法适用于大规模数据集。
  3. 高效性:算法的时间复杂度较低,一般情况下迭代次数较少。

缺点:

  1. 需要预先指定聚类数量K:在实际应用中,聚类数量的选择对结果的影响较大,需要通过试验和领域知识进行调整。
  2. 对初始聚类中心敏感:不同的初始聚类中心会导致不同的聚类结果,可能陷入局部最优解。
  3. 对异常值敏感:异常值可能会造成聚类中心的偏移,从而影响聚类结果。

总结: K-均值聚类算法是一种简单、直观且高效的聚类算法,适用于大规模数据集。然而,算法需要预先指定聚类数量K,并且对初始聚类中心和异常值较为敏感。在实际应用中,需要根据具体情况综合考虑算法的优缺点并进行调整。

相关推荐
虹科网络安全11 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
70asunflower11 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类
Hcoco_me12 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML12 小时前
第九章:EM 算法
人工智能·算法·机器学习
q_354888515313 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
brent42314 小时前
DAY54 CBAM注意力
人工智能·深度学习·机器学习
Hcoco_me14 小时前
大模型面试题90:half2,float4这种优化 与 pack优化的底层原理是什么?
人工智能·算法·机器学习·langchain·vllm
卡尔AI工坊16 小时前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
jay神17 小时前
指纹识别考勤打卡系统 - 完整源码项目
人工智能·深度学习·机器学习·计算机视觉·毕业设计
高洁0118 小时前
数字孪生与数字样机的技术基础:建模与仿真
python·算法·机器学习·transformer·知识图谱