【论文阅读】Segment Anything Model for Road Network Graph Extraction

【论文阅读】Segment Anything Model for Road Network Graph Extraction (CVPRW 2024)

Paper链接:https://openaccess.thecvf.com/content/CVPR2024W/SG2RL/html/Hetang_Segment_Anything_Model_for_Road_Network_Graph_Extraction_CVPRW_2024_paper.html

文章目录

  • [【论文阅读】Segment Anything Model for Road Network Graph Extraction (CVPRW 2024)](#【论文阅读】Segment Anything Model for Road Network Graph Extraction (CVPRW 2024))
    • [1. 摘要](#1. 摘要)
    • [2. 方法](#2. 方法)
      • [2.1 整体结构](#2.1 整体结构)
      • [2.2 Image Encoder](#2.2 Image Encoder)
      • [2.3 Mask Decoder](#2.3 Mask Decoder)
      • [2.4 Topology Decoder](#2.4 Topology Decoder)
      • [2.5 Label Generation](#2.5 Label Generation)

1. 摘要

简单来说,本工作将矢量道路线提取的部分流程视为分割任务,利用SAM预训练模型的强大分割能力,实现了SOTA精度和极高的推理速度。

2. 方法

2.1 整体结构

SAM-Road整体由三个部分构成:

  1. Image Encoder:预训练SAM Image Encoder
  2. Geometry Decoder:即图中的Mask Decoder,由4层转置卷积构成,输出分割概率图
  3. Topology Decoder:由Transformer实现拓扑结构中的Message Passing

2.2 Image Encoder

采用最小版本,即ViT-B。训练时采用0.1倍的基础学习率来微调。

2.3 Mask Decoder

为了提升整体以及交叉点的提取精度,Mask Decoder同时输出两个通道数为1的masks ,形状为(H_img, W_img, 2)。

  1. mask_0用于提取graph vertices。首先,道路由连续的mask表示,因此,每个像素点均有可能是graph vertex。为了获取sparse vertices,本工作设计了一种用于抑制多余vertices的NMS算法。

    NMS of Vertices算法
    1. 根据threshold预处理,消除分数低的像素。
    2. 以d_v为抑制距离(类似目标检测NMS中的IoU),半径内保留分数最高的vertex。
    

    这一步可能出现road vertices分数大于附近intersections的情况,从而出现误消除intersections的情况。

  2. mask_1用于提取intersections。使用同样的NMS算法。

两个masks经处理后,对二者进行join,并将intersections设置较高的分数,再次应用NMS得到最终的graph vertices。

2.4 Topology Decoder

Topology Decoder由3层多头注意力组成,用于将"离散"的vertices连接成拓扑结构。

本方法目的是寻找每个顶点的一阶邻居,并将此视为二分类任务。步骤如下:

  1. 选择一个source vertex;

  2. 在 R n b r R_{nbr} Rnbr范围内选择至多 N n b r N_{nbr} Nnbr个target vertex,构成多个vertex pairs;

    注意,source vertex与每个target vertex都是一阶邻居关系

  3. 对所有选中的顶点计算特征(根据坐标,通过在特征图上进行Bilinear Sample得到顶点特征,即Figure 2中的Source Feat和Target Feat);

  4. 对所有vertex pairs计算offset,得到 d k d_{k} dk;

  5. 拼接Source Feat,Target Feat和 d k d_k dk,得到形状为 ( N n b r , 2 D f e a t + 2 ) (N_{nbr}, 2D_{feat}+2) (Nnbr,2Dfeat+2)的向量,并proj到 ( N n b r , D f e a t ) (N_{nbr}, D_{feat}) (Nnbr,Dfeat)作为query;

  6. 经3层多头注意力后,将query输入线性层得到分类logits,表示vertex pairs相连的概率。

2.5 Label Generation

  • Mask Labels

    1. 使用宽度为3个像素的mask代表道路线段;
    2. 使用半径为3个像素的mask代表intersections;
  • Topology Labels

    • 以教师强制方式训练Topology Decoder

      1. 均匀采样gt mask得到模拟概率图,在此基础上应用NMS Vertices等算法;
      2. 使用高斯分布对gt vertices坐标进行随机扰动;
相关推荐
这个男人是小帅21 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
热爱生活的五柒28 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
埃菲尔铁塔_CV算法7 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
图片转成excel表格8 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
李歘歘9 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习
B站计算机毕业设计超人10 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
新手小白勇闯新世界10 小时前
深度学习知识点5-马尔可夫链
人工智能·深度学习·计算机视觉
热爱生活的五柒11 小时前
深度学习:利用随机数据更快地测试一个新的模型在自己数据格式很复杂的时候
人工智能·深度学习