支持向量机SVM

目录

    • [1 SVM直觉理解](#1 SVM直觉理解)
    • [2. 软硬间隔](#2. 软硬间隔)
    • [3. 升维转换及核技巧入门](#3. 升维转换及核技巧入门)
  • 参考资料

1 SVM直觉理解

通过一条直线将两类数据分开,并且当有新的数据加入时,通过该条直线就能判别其属于哪一类

为了区分两类数据,N为数据的样本数,M为维度数,如何设计一个维度为M-1的超平面,将两类数据分割开,

W可以理解为X对应的权重,

下面以2维空间为例,找到那条分割线

缓冲区足够大,可信度就足够高了。


寻找最佳决策边界的问题,可以转化为求解两类数据最大间隔问题 ,而间隔的正中央,就是我们的决策边界。当有新数据需要判断时,计算它与决策边界的相对位置,就可以分类了。

上图中 1 和 -1 就是对应的正负超平面。最终只需要求解W、B,得到下面3个超平面方程式

2. 软硬间隔

当有异常值的时候

同时考虑收入和成本因素,去最大化我们的利润。这个最优解下形成的间隔,我们称之为软间隔

在间隔距离和错误大小之间找到一个平衡。
硬间隔

3. 升维转换及核技巧入门

升维度,然后进行分类

核技巧

参考资料

1\] [支持向量机SVM是什么,八分钟直觉理解其本质](https://www.bilibili.com/video/BV16T4y1y7qj/?spm_id_from=333.337.search-card.all.click&vd_source=b5e395daf1dc59fb72b2633affa96661) 2022.1;

相关推荐
wsxqaz5 分钟前
浏览器原生控件上传PDF导致hash值不同
算法·pdf·哈希算法
NAGNIP22 分钟前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法
摘星编程26 分钟前
多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
人工智能·算法·多模态ai·视觉语言融合·ai决策算法
NAGNIP27 分钟前
一文搞懂KV-Cache
人工智能·算法
CoovallyAIHub33 分钟前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
爱喝茶的小茶1 小时前
周赛98补题
开发语言·c++·算法
禺垣1 小时前
支持向量机(SVM)分类
机器学习
禺垣1 小时前
协同过滤推荐算法
机器学习
这里有鱼汤1 小时前
90%的人都会搞错的XGBoost预测逻辑,未来到底怎么预测才对?
后端·机器学习
小庞在加油2 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类