支持向量机SVM

目录

    • [1 SVM直觉理解](#1 SVM直觉理解)
    • [2. 软硬间隔](#2. 软硬间隔)
    • [3. 升维转换及核技巧入门](#3. 升维转换及核技巧入门)
  • 参考资料

1 SVM直觉理解

通过一条直线将两类数据分开,并且当有新的数据加入时,通过该条直线就能判别其属于哪一类

为了区分两类数据,N为数据的样本数,M为维度数,如何设计一个维度为M-1的超平面,将两类数据分割开,

W可以理解为X对应的权重,

下面以2维空间为例,找到那条分割线

缓冲区足够大,可信度就足够高了。


寻找最佳决策边界的问题,可以转化为求解两类数据最大间隔问题 ,而间隔的正中央,就是我们的决策边界。当有新数据需要判断时,计算它与决策边界的相对位置,就可以分类了。

上图中 1 和 -1 就是对应的正负超平面。最终只需要求解W、B,得到下面3个超平面方程式

2. 软硬间隔

当有异常值的时候

同时考虑收入和成本因素,去最大化我们的利润。这个最优解下形成的间隔,我们称之为软间隔

在间隔距离和错误大小之间找到一个平衡。
硬间隔

3. 升维转换及核技巧入门

升维度,然后进行分类

核技巧

参考资料

[1] 支持向量机SVM是什么,八分钟直觉理解其本质 2022.1;

相关推荐
HPC_fac1305206781610 分钟前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou3 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
Swift社区6 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman7 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年7 小时前
数据结构 (1)基本概念和术语
数据结构·算法
Dong雨8 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
SoraLuna8 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221518 小时前
机器学习系列----关联分析
人工智能·机器学习
liujjjiyun8 小时前
小R的随机播放顺序
数据结构·c++·算法