1. 意图
在开发中,若某些模块或功能只需要一个类实例,所有调用地方通过着一个类对象访问功能,单例模式符合这种类实例创建模式,并且通过提供统一类实例接口访问类对象。
2. 适用性
《Gof 设计模式-可复用面向对象软件的基础》中对此模式的适用性描述如下:
- 当类只能有一个实例且客户可以从一个公众的访问点访问。
- 当这个唯一实例应该是通过子类化可拓展的,并且客户应该无需更改代码就能使用一个扩展的实例时。
3. 实现
- 饿汉模式:类加载时,类对象创建并初始化,调用时直接使用已经创建好的。
cpp
#include <iostream>
class Singleton {
public:
static Singleton *GetInstance() { return m_instance; }
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
private:
static Singleton *m_instance;
};
Singleton *Singleton::m_instance = new Singleton;
void Test() { Singleton::GetInstance()->Print(); }
int main() {
Test();
return 0;
}
- 懒汉模式:类对象创建与初始化被延迟到真正调用的位置。
cpp
#include <iostream>
class Singleton {
public:
static Singleton *GetInstance() {
if (m_instance == nullptr)
m_instance = new Singleton;
return m_instance;
}
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
private:
static Singleton *m_instance;
};
Singleton *Singleton::m_instance = nullptr;
void Test() { Singleton::GetInstance()->Print(); }
int main() {
Test();
return 0;
}
懒汉模式存在多线程并发问题,可以加锁,如下
cpp
#include <iostream>
#include <mutex>
std::mutex mtx;
class Singleton {
public:
static Singleton *GetInstance() {
std::lock_guard<std::mutex> locker(mtx);
if (m_instance == nullptr)
m_instance = new Singleton;
return m_instance;
}
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
private:
static Singleton *m_instance;
};
以上通过加锁保证了数据的并发安全,但若此对象创建好后多个线程频繁调用,每次都加锁访问可读对象,对程序性能影响较大,于是又出现了双层检查机制,优化访问性能。
cpp
#include <iostream>
#include <mutex>
std::mutex mtx;
class Singleton {
public:
static Singleton *GetInstance() {
if (m_instance == nullptr) {
std::lock_guard<std::mutex> locker(mtx);
if (m_instance == nullptr)
m_instance = new Singleton;
}
return m_instance;
}
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
private:
static Singleton *m_instance;
};
Singleton *Singleton::m_instance = nullptr;
void Test() { Singleton::GetInstance()->Print(); }
int main() {
Test();
return 0;
}
双重检查机制实际上还存在潜在的问题,内存访问重新排序(重新排列编译器产生的汇编指令)导致双重锁定失效(考虑类对象内存分配和调用构造函数初始化分为两步执行,指令不顺序执行就无法保证多线程有其它指令在这两步之间执行)。所以需要保证指令顺序执行,避免指令重排。
cpp
#include <atomic>
#include <iostream>
#include <mutex>
class Singleton {
public:
static Singleton *GetInstance() {
Singleton *tmp = m_instance.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
if (tmp == nullptr) {
std::lock_guard<std::mutex> locker(m_mtx);
tmp = m_instance.load(std::memory_order_relaxed);
if (tmp == nullptr) {
tmp = new Singleton;
std::atomic_thread_fence(std::memory_order_release);
m_instance.store(tmp, std::memory_order_relaxed);
}
}
return m_instance;
}
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
private:
static std::atomic<Singleton *> m_instance;
static std::mutex m_mtx;
};
std::atomic<Singleton *> Singleton::m_instance = nullptr;
std::mutex Singleton::m_mtx;
void Test() { Singleton::GetInstance()->Print(); }
int main() {
Test();
return 0;
}
以上使用原子变量及内存序约束实现单例类,避免指令重排问题,同时解决并发问题。但实现略微繁琐,c++11以后对静态变量创建的并发安全提供了保证,简化写法如下:
cpp
#include <iostream>
class Singleton {
public:
static Singleton &GetInstance() {
static Singleton instance;
return instance;
}
void Print() { std::cout << __FUNCTION__ << std::endl; }
private:
Singleton() = default;
~Singleton() = default;
Singleton(const Singleton &) = delete;
Singleton &operator=(const Singleton &) = delete;
};
void Test() { Singleton::GetInstance().Print(); }
int main() {
Test();
return 0;
}
4. 优缺点
- 控制类实例数量
- 比类操作更灵活,减少命名空间污染
- 隐藏了类之间的依赖关系
- 影响代码的扩展性
- 影响代码的可测试性
- 不支持包含参数的构造函数
5. 模板实现
- 单实例管理
cpp
template <typename T> class SingletonManager {
public:
template <typename... Args> static T &GetInstance(Args &&...args) {
static T instance(std::forward<Args>(args)...);
return instance;
}
private:
SingletonManager() = default;
virtual ~SingletonManager() = default;
SingletonManager(const SingletonManager &) = delete;
SingletonManager &operator=(const SingletonManager &) = delete;
};
- 多实例管理
cpp
#include <map>
#include <memory>
#include <string>
template <typename T, typename K = std::string> class MultitonManager {
public:
template <typename... Args>
static T &GetInstance(const K &key, Args &&...args) {
return AssignInstance(key, std::forward<Args>(args)...);
}
template <typename... Args> static T &GetInstance(K &&key, Args &&...args) {
return AssignInstance(key, std::forward<Args>(args)...);
}
private:
template <typename Key, typename... Args>
static T &AssignInstance(Key &&key, Args &&...args) {
auto iter = m_map.find(key);
if (iter == m_map.end()) {
static T instance;
m_map.emplace(key, &instance);
return instance;
}
return *(iter->second);
}
private:
MultitonManager() = default;
virtual ~MultitonManager() = default;
MultitonManager(const MultitonManager &) = delete;
MultitonManager &operator=(const MultitonManager &) = delete;
private:
static std::map<K, T *> m_map;
};
template <typename T, typename K> std::map<K, T *> MultitonManager<T, K>::m_map;